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ABSTRACT 

 

A DIGITALLY CONTROLLED FM MEMS GYROSCOPE SYSTEM 

 

 

 

Yeşil, Ferhat 

Doctor of Philosophy, Electrical and Electronic Engineering 

Supervisor: Prof. Dr. Tayfun Akın 

 

 

 

January 2023, 110 pages 

 

This dissertation presents a digitally controlled high performance FM MEMS 

gyroscope system with improved short and long term stability for tactical and near 

navigation grade applications.  The digital gyroscope system has a number of 

advantages such as simplified electronic hardware, small size, low power, and 

increased flexibility with software programming for easy configuration for different 

operation conditions, real-time advanced calibration, and extensive testability. The 

system is implemented with a low-power microcontroller as opposed to the FM 

MEMS gyroscope systems implemented with high-power FPGAs in literature, and 

it is fit into a compact sensor package comparable in the size of the commercial high-

performance MEMS gyroscopes so that it can be offered as a commercialized 

product.  

The system is developed for a MEMS gyroscope that has a mechanical resonant 

frequency of about 7.5kHz, which requires digital control loop speeds faster than 

75kHz for the 8 implemented digital control loops.  These challenging digital control 

loop speeds are achieved using hardware accelerators and register-level 

programming methods.  The most critical digital control loop is the PLL loop that is 

used for frequency reading of the FM output, and this loop is carefully designed for 
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obtaining a measurement bandwidth greater than 100Hz which is necessary for the 

implementation of the Lissajous FM method to achieve an improved  bias instability 

of the gyroscope.  The angular random walk (ARW) performance of the gyroscope 

is improved significantly by using the Lissajous FM method with an asymmetric 

MEMS gyroscope for the first time in the literature; as this approach allows to obtain 

an oscillation amplitude ratio of the first and second resonant modes as high as 2500 

(as opposed to values lower than 25 in fully symmetric gyroscope structures) which 

yields to a record high scale factor of 875Hz/(rad/sec), i.e., two orders of magnitude 

higher than those reported for the FM MEMS gyroscopes in literature.    

The performance of the FM MEMS gyroscope system is measured to provide an 

ARW value of 0.52°/hr/Hz and bias instability value of 0.2°/hr, demonstrating 

about 6 times better performance for each value of the best FM MEMS gyroscope 

system reported in the literature implemented with a high-power and bulky FPGA 

board.   

 

Keywords: MEMS, FM gyroscope, MEMS Gyroscope, Digital Control 
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ÖZ 

 

DİJİTAL OLARAK KONTROL EDİLEN FM MEMS DÖNÜÖLÇER 

SİSTEMİ 

 

 

 

Yeşil, Ferhat 

Doktora, Elektrik ve Elektronik Mühendisliği 

Tez Yöneticisi: Prof. Dr. Tayfun Akın 

 

 

Ocak 2023, 110 sayfa 

 

Bu tez, taktiksel ve seyrüsefer seviyeli uygulamalar için geliştirilmiş kısa ve uzun 

vadeli kararlılığa sahip, dijital olarak kontrol edilen yüksek performanslı bir FM 

MEMS dönüölçer sistemini sunmaktadır. Dijital dönüölçer sistemi, basitleştirilmiş 

elektronik donanım, küçük boyut, düşük güç ve farklı çalışma koşulları için kolay 

konfigürasyon için programlama ile artırılmış esneklik, gerçek zamanlı gelişmiş 

kalibrasyon ve kapsamlı test edilebilirlik gibi bir dizi avantaja sahiptir. Sistem, 

literatürde yüksek güçlü FPGA'lar ile uygulanan FM MEMS dönüölçer sistemlerinin 

aksine düşük güçlü bir mikrodenetleyici ile gerçeklenmiştir ve ticari yüksek 

performanslı MEMS dönüölçerler ile karşılaştırılabilir boyutta kompakt bir sensör 

paketine sığdırılması ile ticarileştirilmiş bir ürün olarak sunulabilmektedir. 

Sistem, 8 adet dijital kontrol döngüsü için 75 kHz'den daha yüksek dijital kontrol 

döngüsü hızları gerektiren yaklaşık 7,5 kHz mekanik rezonans frekansına sahip bir 

MEMS dönüölçer için geliştirilmiştir. Bu zorlu dijital kontrol döngüsü hızlarına, 

donanım hızlandırıcıları ve kayıt düzeyinde programlama yöntemleri kullanılarak 

ulaşılabilmektedir. En kritik dijital kontrol döngüsü, FM çıkışının frekans okuması 

için kullanılan PLL döngüsüdür ve bu döngü, offset kararsızlığını geliştiren 

Lissajous FM yönteminin uygulanması için gerekli olan 100Hz'den daha büyük bir 
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ölçüm bant genişliği elde etmek için dikkatlice tasarlanmıştır. Literatürde ilk kez 

asimetrik MEMS jiroskop ile Lissajous FM yöntemi kullanılarak dönüölçerin açısal 

rastgele yürüyüş (ARW) performansı önemli ölçüde iyileştirildi; bu yaklaşım, birinci 

ve ikinci rezonans modlarının salınım genlik oranının 2500'e kadar çıkmasını 

sağlamaktadır (tamamen simetrik dönüölçer yapılarında 25'ten düşük değerlerin 

aksine), bu da 875Hz/(rad/sn) gibi rekor bir yüksek orantı katsayısı vermektedir, 

literatürde FM MEMS dönüölçerler için bildirilenlerden 100 kat daha yüksek. 

FM MEMS dönüölçer sisteminin performansı, 0,52°/saat/Hz'lik bir ARW değeri ve 

0,2°/saat'lik bir ofset kararsızlığı değeri sağlayacak şekilde ölçülür ve literatürde 

bildirilen en iyi FM MEMS jiroskop sisteminin(yüksek güçlü ve hantal bir FPGA 

kartı ile geliştirilen) her bir değeri için yaklaşık 6 kat daha iyi performans 

göstermektedir.  

 

Anahtar Kelimeler: FM MEMS Dönüölçer, Dijital kontrol 
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CHAPTER 1  

1 INTRODUCTION  

The gyroscope is a critical component in a wide range of high-end industrial 

applications, from automotive to military. It is foreseeable that future inertial 

navigation and flight control markets will depend more and more on MEMS 

gyroscopes. These applications' requirements can be met by introducing customized 

control loops and enhancing their performance. The majority of MEMS gyroscopes 

are Coriolis vibrating gyroscopes, which operate in the amplitude modulated (AM) 

operational mode. Standard amplitude-modulated (AM) readout has made 

significant advancements in terms of angle random walk (ARW) and bias instability 

by improving parametric amplification, mode matching, sensor mechanical quality 

factor, and other technologies. However, the long-term stability for zero rate output 

and scale factor has proven challenging for the development of AM gyroscopes[1]. 

These error terms mainly occurred by quadrature coupling, an-isodamping, and very 

long signal chain in the AM gyroscope readout. However, an alternate operational 

mode of the vibratory gyroscope based on its frequency modulation (FM) effect has 

recently gained increasing attention to eliminate the error terms easily and 

effectively. 

This chapter begins with a brief overview of the evolution of MEMS gyroscopes 

prior to the present attempts for new and improved gyroscope devices and concludes 

with performance standards and error sources. The subsequent chapter of this 

dissertation concentrate on the FM gyroscope's theory, implementation, and test 

results.  
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1.1 Overview of MEMS Gyroscopes 

The earliest micromachined gyroscope research began in the early 1900s with quartz 

gyroscopes, however quartz-based techniques are not suited for semiconductor 

fabrication technology. This issue was resolved in 1991 by the Charles Stark Draper 

Laboratory, created a gyroscope that can be produced using semiconductor 

fabrication techniques, has a dual gimbal structure with a vertical bar, and has a 

resolution of 1° sec in a 1 Hz measuring bandwidth. [2]. Different types of 

gyroscopes appeared in the years that followed, including the piezoelectric vibrating 

gyroscope, MOMES gyroscope, micromachined vibrating gyroscope, atom 

gyroscope, thermal convective gyroscope, magnetic levitated gyroscope, and 

electrostatic levitated gyroscope[3]. These gyroscopes were made using several 

fabrication processes such as surface micromachining, wafer bonding, 

electroplating, bulk micromachining, and combination fabrication. 

Over the years, the most often researched gyroscope type has been the 

micromachined vibrating gyroscope (MVG). The main focus of this category was 

the tuning fork vibratory gyroscope (TFG) with sense and drive electrodes. The 

current trend in MEMS is to downsize the complete system, including first mode, 

second mode, quadrature cancellation, and frequency matching control in a digital 

controller [4][5][6]. 

Alper [7] at METU MEMS has created a fully decoupled tuning fork gyroscope with 

higher performance that meets tactic level criteria. Tatar[8] builds and tests a 

completely decoupled tuning fork gyroscope with quadrature cancellation 

capabilities. Torunbalci [9][10][11] vacuum packages the investigated MEMS 

gyroscope. Eminoglu [12] researched CMOS readouts as well as the first 

systematization and modeling. Gavcar [13] cancels the acceleration sensitivity of the 

tuning fork gyroscope. 

The first FM gyroscope investigations were undertaken by Seshia, who constructed 

a double-ended tuning fork gyroscope with the capacity to vary the elastic coefficient 
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using Coriolis force [14]. Moussa et al [15] created the first operational FM 

gyroscope that responds to changes in input angular velocity. 

Kline et al. suggested a quadrature frequency modulated (QFM) mode FM gyroscope 

[16]. The two modes of the tuning fork gyroscope are orthogonally operated to 

modify the resonance frequency with regard to angular velocity. Furthermore, to 

eliminate the temperature effect, two QFM gyroscopes were operated with 90° and 

-90° phase shifts. 

To mitigate gyroscope long-term drift, Eminoglu et al. presented an indexed FM 

gyroscope in which the phase difference between two resonant modes is regularly 

changed between +90° and -90°. Inversely, the IFM gyroscope's auto-zeroing rate 

limits the system bandwidth. [1]. 

Another option for canceling temperature dependency is to build an FM gyroscope 

using the Lissajous frequency-modulated mechanism, which continuously reverses 

the modes. This is accomplished by introducing some frequency difference between 

the modes[17]. As a result, the proof mass moves in a Lissajous pattern as shown in 

Figure 1.1, and the vibration phase difference between the two modes continuously 

varies from 0° to 360°. The LFM gyroscope modifies the resonance frequency of the 

two gyroscope working modes by modulating the angular rate to the mode separation 

frequency. Phase-sensitive demodulation of the two working mode frequencies 

followed by filtering can be used to determine the external angular rate. The output 

of the LFM gyroscope is unaffected by the temperature-dependent mode natural 

resonance frequency, in contrast to the QFM gyroscope. The LFM gyroscope 

benefits more from temperature stability of zero rate output as a result. 
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Figure 1.1. A Lissajous pattern is produced by the proof mass's trajectory when the 

x- and y-axis oscillators operate at various frequencies[16]. 

 

FM gyroscopes lock their vibration frequency to the resonance frequency of the 

mode, which is frequently done using self-oscillation [18]. In addition to the self-

oscillation method, PLL can be used to maintain resonance [19]. If digital PLL is 

used to track the gyroscope resonance frequency, which can then be used directly for 

subsequent signal processing to obtain the angular rate information, eliminating the 

need for specialized frequency readout circuits, PLL can also be used as an optional 

excitation method for FM gyroscopes. The digital PLL system works with both AM 

and FM modes, so no additional interface circuitry is required. 
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1.2 Micromachined Vibratory Gyroscope and Performance Specifications 

 

Figure 1.2. 2-DOF fully decoupled MEMS gyroscope structure[7]. 

 

As shown in Figure 1.2, MEMS gyroscopes are often built as double-ended tuning 

forks with a resonator that has two degrees of freedom (DOF). Shuttle frames with a 

1-DOF and a 2-DOF proof mass make up this resonator. The total structure can 

simply be thought of as two discrete connected resonators traveling in orthogonal 

directions (x- and y- axis).  

An inertial navigation system's gyroscope performance requirements are fairly 

demanding. Analysis and effective solution of the gyroscope's error sources are 

necessary to achieve the desired performance parameters. 

The most important gyroscope error source for navigation systems is the bias error 

caused by undesired coupling forces between the resonators. There are three main 

undesired coupling mechanisms which results bias error in MEMS gyroscopes. 

The first is quadrature coupling between two mechanically connected resonators, 

which is typically caused by manufacturing defects in spring and transduction 

imbalances. Because the quadrature error has a 90° phase difference with Coriolis, 
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it may be eliminated by synchronous demodulation. Any phase delay introduced into 

the loop, on the other hand, causes leakage and degrades the rate signal. To reduce 

the phase delay, the electronics' bandwidth is kept high by sacrificing power 

consumption. 

The other error source is an-isodamping, which is in phase with Coriolis force and 

cannot be distinguished from the rate input as in the quadrature case. The answer is 

to improve the quality factor to reduce the fluidic coupling-related an-isodamping. 

However, if the MEMS structure is totally symmetric in both channels, this error can 

also be negated by alternating the channels in each other like auto-zeroing opamps. 

Due to the misalignment and imbalance of the force electrodes caused by fabrication 

imperfections, force coupling error is the final source of bias error generation. The 

applied forces on these electrodes created in-phase error with Coriolis force. The first 

solution for this is to design the fully decoupled MEMS structure as in Figure 1.2. 

The residual force coupling can be cancelled by applying a perturbation signal on 

the drive electrodes[20]. 

The scale factor error is the second most common source of gyroscope inaccuracy in 

navigation systems. For AM gyroscopes, scale factor is often not as excellent as bias 

stability; nevertheless, for slowly rotating systems, scale factor inaccuracy does not 

degrade the system as much. However, today's systems are highly dynamic and 

rapid, necessitating very high scale factor stability in order to monitor the heading 

within a certain error margin. 

To increase scale factor accuracy, all of the scale factor crucial parameters in the AM 

gyroscope must be precisely regulated; nevertheless, it is composed of multiple 

mechanical and electrical parts with varying characteristics. Scale factor may be 

assessed as frequency in the nature of angular rate to reduce scale factor related 

characteristics. 
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For very high dynamic systems, bandwidth of the MEMS gyroscope should be high 

enough to keep the error to some acceptable bound for the fastest possible input 

signal.  

There are multiple performance grade gyroscopes based on the error rates of the 

MEMS gyroscope. These are classified as tactical-grade, rate-grade, and navigation-

grade. Table 1.1 describes the performance standards for these three grades. 

Table 1.1 Performance specifications for different grades of MEMS gyroscopes [21]. 

Parameter  Rate Grade  Tactical Grade  Inertial Grade  

Angle Random Walk, ⁰/√hr  >0.5  0.5-0.05  <0.001  

Bias Instability, ⁰/hr  10-1000  0.1-10  <0.01  

Scale Factor Linearity, %  0.1-1  0.01-0.1  <0.001  

Measurement Range, ⁰/sec  50-10000  >500  >400  

 

1.3 The Studied Gyroscope 

In this thesis, a digitally controlled FM MEMS gyroscope based on a microcontroller 

is implemented using a completely decoupled double ended tuning fork MEMS 

gyroscope. Although the drive and sensing modes of this gyroscope are not 

symmetric, the resonance frequencies of these modes were created to be able to 

electronically match them. 
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1.4 Research Objectives and Thesis Organization 

The main objective of this thesis research is to design and implement the readout 

electronics of the Lissajous FM MEMS gyroscope with digital controller, as well as 

to improve the noise performance of the system through phase noise theory and 

testing. The main goals of this study can be listed in the following way: 

1. The general theory of tuning fork gyroscopes should be investigated for AM 

and FM operation modes. The performance of gyroscope systems is strongly 

dependent on the operation principle and an effective examination of the 

theory behind the operation. 

2. To build an oscillating system, the performance characteristics must be 

identified using oscillator theory. The performance of an oscillator is related 

to its phase noise performance. Calculations of phase noise for a standard 

MEMS oscillator and a PLL-operated MEMS oscillator should be performed. 

3. The digital implementation of the FM gyroscope necessitates a large number 

of resources from the digital controller. The system's design and 

implementation should be done carefully in order to make the best use of the 

resources and keep the current consumption below that of commercialized 

tactical grade gyroscopes. 

The thesis is organized as follows, and the contents of the succeeding chapters are as 

follows: 

Chapter 2 examines in depth the tuning fork MEMS gyroscope following the 

derivation of the fictitious force. In addition, methods for mode-matching are 

presented. 

Chapter 3 presents the derivation of coupled oscillators with two degrees of freedom. 

This derivation is used to characterize the frequency modulated gyroscope's transfer 

functions. After that, the operation and benefits of the Lissajous FM gyroscope are 

discussed. 
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Chapter 4 describes the oscillator's theory. Next, the phase noise derivations for 

linear and nonlinear operations are provided. Calculation of phase noise for the PLL-

inserted closed loop oscillator is performed for use in performance analysis. 

Chapter 5 The implementation of the digitally controlled FM gyroscope is presented. 

The design of digital PLL within this controller is also described in detail, along with 

the design procedures. In addition, the rate noise is calculated by determining the 

phase noises of the resonators and the scale factor of the Lissajous FM gyroscope. 
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CHAPTER 2  

2 MEMS VIBRATORY GYROSCOPE 

This thesis focuses on the application of the micromachined vibratory rate 

gyroscope. In this chapter, the theory underlying the MEMS vibratory gyroscope is 

discussed and the model of the gyroscope is derived. The mathematical formula of 

the Coriolis force generated on the gyroscope is described in Section 2.1. The 

sections 2.2 and 2.3 provide a comprehensive examination of the first and second 

modes, respectively. Section 2.5 describes the electronegative spring softening effect 

used to change the resonance frequency of the second mode. Section 2.6 describes 

the mode-matching approach. Finally, Section 2.7 presents a chapter overview. 

2.1 The Coriolis Force 

This fictitious force can only be theoretically calculated through the use of reference 

frames that are not inertial. A mass with a position vector xA(t) that may be calculated 

in the inertial frame A using Figure 2.1. The expression XAB(t) is the definition of a 

non-inertial frame in relation to frame A, and the expression xB(t) is the definition of 

mass in this frame. The forces that are acting on this mass in relation to frame B are 

going to be calculated. 

As seen in frame B, the mass is oriented as follows: 

xB =∑𝑥𝑗

3

𝑗=1

u𝑗  

 

2.1 
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Figure 2.1. In accelerated frame B, an object that was once located at coordinate xA 

in inertial frame A has now moved to coordinate xB. At the coordinates XAB, the start 

of frame B can be identified in frame A. The unit vectors that cross each of frame 

B's coordinate directions establish the orientation of the frame, uj with j = 1, 2, and 

3. The coordinates of the item in frame B are stated as follows when these axes are 

used: xB = ( x1, x2,x3 ). 

 

In frame A, the mass is located as follows: 

xA = XAB +∑𝑥𝑗

3

𝑗=1

u𝑗 

 

 

2.2 

 

By computing the derivative of x A in frame A, it is possible to find the velocity of 

the mass, as follows: 

𝑑xA
𝑑𝑡

=
𝑑XAB 
𝑑𝑡

+∑
𝑑𝑥𝑗

𝑑𝑡

3

𝑗=1

u𝑗 +∑𝑥𝑗

3

𝑗=1

𝑑u𝑗

𝑑𝑡
 

 

2.3 

 

The acceleration of the mass can be calculated using the double derivative ofxA using 

the following expression: 
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𝑑2xA
𝑑𝑡2

= a𝐴𝐵 + a𝐵 + 2∑𝑣𝑗

3

𝑗=1

𝑑u𝑗

𝑑𝑡
+∑𝑥𝑗

3

𝑗=1

𝑑2u𝑗

𝑑𝑡2
 

 

2.4 

The first term in Equation 2.4 indicates frame B's acceleration in frame A. The true 

acceleration of the mass in frame B is the second term. As a result of the displacement 

of the frame B coordinate axes, an observer in frame B notices that the mass has 

three more acceleration terms. These fictitious acceleration components result from 

observers in frame B not recognizing frame B's non-inertial nature. The other two 

variables are related to the rotation of frame B, but the term aAB is created by the 

acceleration of the frame B origin. 

To determine the forces operating on this mass, multiply the acceleration terms by 

the mass. 

FA = FB +  𝑚aAB + 2𝑚∑𝑣𝑗

3

𝑗=1

𝑑u𝑗

𝑑𝑡
+ 𝑚∑𝑥𝑗

3

𝑗=1

𝑑2u𝑗

𝑑𝑡2
 

 

2.5 

Thus, Equation 2.6 can be used to describe the fictional force. 

Ffictitious = − 𝑚aAB − 2𝑚∑𝑣𝑗

3

𝑗=1

𝑑u𝑗

𝑑𝑡
− 𝑚∑𝑥𝑗

3

𝑗=1

𝑑2u𝑗

𝑑𝑡2
 

 

2.6 

The problem may then be addressed in frame B by considering the Ffictitious as an 

extra force. 

Determining the perceived time rate of change of vectors is also necessary when 

frame B is defined as a rotating coordinate system, as in a gyroscope. A vector 𝛺 

whose magnitude is given by the below formula is used to describe the rotation of 

frame B. 
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|Ω| =
𝑑𝛳

𝑑𝑡
= 𝜔(𝑡) 

 

2.7 

 

All three frame B unit vectors have the same time derivative, which is 

 

𝑑u𝑗(𝑡)

𝑑𝑡
= Ω × u𝑗(𝑡) 

 

2.8 

𝑑2u𝑗

𝑑𝑡2
=  
𝑑Ω

𝑑𝑡
× u𝑗 + Ω × [Ω × u𝑗(𝑡)] 

2.9 

 

The acceleration that occurs in the translational direction can be eliminated by setting 

an  aAB = 0. 

a𝐴 = a𝐵 + 2Ω × vB + 
𝑑Ω

𝑑t
× xB + Ω × (Ω × xB) 

 

2.10 

 

Following is the complete mathematical equation for the fictitious force, which is a 

combination of Euler, the forces of centrifugal and Coriolis. 

 

Ffictitious = −2𝑚Ω × vB −  𝑚Ω × (Ω × xB) − 𝑚
𝑑Ω

𝑑t
× xB 

 

2.11 
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It is now necessary to isolate the Coriolis force from the other terms. In the absence 

of a time-varying rate of rotation, some systems can cancel out the impact of 

centrifugal force, and the Euler force is assumed to be zero. Finally, we derived the 

gyroscope's most important notion for determining the rate of rotation in a non-

inertial frame. 

 

2.2 Expressions in First Resonant Mode 

Equation 2.11 illustrates the development of the velocity term of the Coriolis force, 

vB, the proof mass must oscillate along the first axis for an extended length of time. 

This velocity component is essential for a zero-rate output and constant scale factor 

due to gain mismatches. By precisely modeling the first mode dynamics, it is 

possible to maintain a constant vB. Using Equations 2.12 and 2.14 as a starting point, 

Figure 2.2 shows a model of the spring-mass-damper system. 

 

 

Figure 2.2. Spring Mass Damper System 
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The following system properties and displacement define the force delivered to the 

mechanical system: 

F(s) = (m. s2 + b. s + k). x 

 

2.12 

Equations 2.13 and 2.14, which are derived from Equation 2.12, can be used to 

express the displacement and velocity, respectively. 

X(s). s

F(s)
=

 s

m. s2 + b. s + k
 

 

2.13 

V(s)

F(s)
=

 s

m. s2 + b. s + k
 

 

2.14 

To describe the entire mechanical transfer function of the first mode, the processes 

that convert voltage to force and velocity to current must be stated and derived. 

Variable overlap capacitors as in Figure 2.3 are used to accomplish the voltage-to-

force conversion. This system is mathematically calculated from Equation 2.15 to 

Equation 2.17. 

 

Figure 2.3. Varying overlap capacitor. 
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The energy equation for a capacitor serves as the starting point for this system's 

derivation. The force produced by the applied potential, which is shown in Equation 

2.15, and continues with the derivation of that equation to determine that force, 

which is shown in Equation 2.16. On the other hand, the relationship between the 

applied potential and this force is not linear. This problem has been solved by adding 

additional DC potential to the applied potential, as this requirement has been 

mentioned. According to Equation 2.17, this potential will generate a linear force 

that is proportional to Vprof x Vac at the frequency of the AC potential that is being 

applied. 

 

E =  
1

2
C. V2 

 

2.15 

 

∂E

∂x
= F =

1

2
.
∂C

∂x
. V2 

2.16 

 

F =
1

2

∂C

∂x
(Vprof − Vac)2

=
1

2

∂C

∂x
((Vprof)2 + (Vac)2 − 2 Vprof Vac) 

 

2.17 

 

The conversion of speed into current is yet another aspect of the first resonant mode. 

The speed of the mass is changed into a current by the utilization of variable overlap 

capacitors. 

This conversion's derivation can be found by this fundamental Equation 2.18. With 

relation to the changing capacitance, Equation 2.19 gives an expression for this 

equation's time derivative. 
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𝑄 = 𝐶𝑉 2.18 

 

𝐼 =
𝜕𝐶

𝜕𝑡
. 𝑉 2.19 

In a gyroscope, 
𝜕𝐶

𝜕𝑥
 is the most important parameter; therefore, 

𝜕𝐶

𝜕𝑡
 is determined by 

𝜕𝐶

𝜕𝑥
.
𝜕𝑥

𝜕𝑡
, as shown in Equation 2.20. 

𝐼 =
𝜕𝐶

𝜕𝑥
.
𝜕𝑥

𝜕𝑡
. 𝑉 

 

2.20 

 

The whole transfer function of the driving mechanism can be defined using Equation 

2.21, which incorporates Equations 2.14, 2.17, and 2.20. The equation that follows 

shows this. 

ωD = √
k

m
 2.21 

𝑄𝐷 =
√𝑘.𝑚

𝑏
 

2.22 

By modifying the transfer function from voltage to current using the aforementioned 

equations, a more understandable transfer function, represented by Equation 2.24, 

may be created. 

 

𝐼(𝑠)

𝑉𝑎𝑐(𝑠)
= −(

𝜕𝐶

𝜕𝑥
𝑉𝑝𝑟𝑜𝑓)2

 𝑠

𝑚. (𝑠2 +
𝜔𝐷
𝑄𝐷

. 𝑠 + 𝜔𝐷2)
 

2.23 
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Equation 2.25, which includes 𝜔𝐷, 𝑄𝐷, and mechanical parameters, describes the 

𝐼(𝑠)

𝑉𝑎𝑐(𝑠)
transfer function when the operating frequency is 𝜔𝐷. 

𝐼(𝑗𝜔𝐷)

𝑉𝑎𝑐(𝑗𝜔𝐷)
= −(

𝜕𝐶

𝜕𝑥
𝑉𝑝𝑟𝑜𝑓)2

𝑄𝐷
𝑚.𝜔𝐷

 
2.24 

At the frequency of mechanical resonance, 
𝐼

𝑉𝑎𝑐
is directly proportional to 𝑄𝐷, 

according to the final equation. Additionally, it shows that the system's displacement 

is at its maximum when the applied potential generates the smallest operational 

excitation force for a particular displacement amount. Furthermore, at the lowest 

level, the lowest excitation force couples mechanically and electrically to other 

systems. 

2.3 Expressions in Second Resonant Mode 

Dynamics in the first and second modes are very comparable. The actuation and 

sensing electrodes, on the other hand, are distinct from the first mode’s electrodes. 

For actuation and sensing, capacitive electrodes with a varying gap are used instead. 

Due to the gyroscope's completely decoupled structure, the proof mass is the only 

component responsive to the fictitious force when producing the second mode 

dynamics. As a result, the second mode's dynamics can be represented as 

Ffictitious = −2𝑚𝑃𝑀Ωz × vD − 𝑚PMΩz × (Ωz × xD) − 𝑚𝑃𝑀

𝑑Ωz
𝑑t

× xD = 𝑚𝑆𝑦̈(𝑡) + 𝑏𝑆𝑦̇(𝑡) + 𝑘𝑆𝑦(𝑡) 

 

2.25 

The terms 𝑚𝑃𝑀 and 𝑚𝑆 in Equation 2.25, respectively, stand for the proof mass and 

the mass of the second mode’s electrodes combined. 

Since the influence of centrifugal force may be countered by various systems, the 

Ffictitious can be taken to equal the sum of the Coriolis and Euler forces. With these 

changes, Equation 2.25 can be represented as Equation 2.26. 
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−2𝑚𝑃𝑀Ωz × vD −𝑚𝑃𝑀

𝑑Ωz
𝑑t

× xD = 𝑚𝑆𝑦̈(𝑡) + 𝑏𝑆𝑦̇(𝑡) + 𝑘𝑆𝑦(𝑡) 

 

2.26 

Assume an angular rate input that varies with time and a first mode displacement 

that varies with time as follows: 

xD(t) = XD cos(wDt) 2.27 

 

Ωz(t) = Ωz cos(wzt) 2.28 

 

When Equation 2.27 and Equation 2.28 are plugged into Equation 2.26, the fictitious 

second mode dynamics are represented by Equation 2.29. 

mPMΩzXD {(wD +
wz

2
) sin(wD +wz)t

+ (wD −
wz

2
) sin(wD −wz)t}

= mSÿ(t) + bSẏ(t) + kSy(t) 

2.29 

 

Equations 2.30 and 2.31 show that there are two portions to the Coriolis force is 

along gyroscope's second mode, and they are equally spaced in the frequency domain 

with respect to the resonance frequency of the first mode, 𝑤𝐷. The amplitudes of 

these components can be expressed as 
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Y(wD +wz) =

mPM

mS
XDΩz (wD +

wz

2 )

(ws
2 − (wD +wz)2) + j

wS

QS
(wD +wz)

 2.30  

Y(wD −wz) =

mPM

mS
XDΩz (wD −

wz

2 )

(ws
2 − (wD −wz)2) + j

wS

QS
(wD −wz)

 2.31  

 

The second mode of the gyroscope performs two different tasks depending on the 

distinction between the resonance frequencies of the first and second modes. The 

first is a mismatched operation characterized by a wide frequency separation 

between two modes. This operation's response can be expressed as: 

Y(wD −wz) + Y(wD +wz) =
XDΩz

(∆w) + j
wS

QS

mPM

mS
 

2.32 

 

Mode-matched operation describes the second functioning of the gyroscope in which 

the first and second modes' resonance frequencies are somewhat closer together. The 

response of this operation can be expressed as: 

 

Y(wD −wz) + Y(wD +wz) =
XDΩz

j
wS

QS

mPM

mS
 

2.33 

  

Equations 2.32 and 2.33 show that the second mode displacement is improved by the 

quality factor of the second mode's structure when the resonance frequencies of the 

gyroscope's first and second modes are matched. This is the idea behind enhancing 
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the sensitivity of a vibratory gyroscope to reduce the electrical noise, as the quality 

factors for micro-machined resonators may approach millions at vacuum. 

To get the whole second mode transfer function, it is also necessary to describe the 

voltage to force and velocity to current conversions. 

Varying capacitors are used to excite and detect the motion in the second mode 

shown in Figure 2.4. The derivation of the forces and current generated by these 

varying capacitors should start with in Equations 2.35. 

 

 

Figure 2.4.  Varying gap capasitor. 

 

𝑑𝐶

𝑑𝑥
= ∓

Ɛ. h. l

(𝑑 ± 𝑥)2
 

2.35 

 

The following equation can be used to express the force produced by varying gap 

second mode electrodes. 
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                𝐹𝐹 =
1

2
.
𝜕𝐶

𝜕𝑥
. (𝑉𝑝𝑟𝑜𝑓 − Vff)2

=
1

2
.
𝜕𝐶

𝜕𝑥
. ((𝑉𝑝𝑟𝑜𝑓2 + Vff2) − 2. 𝑉𝑝𝑟𝑜𝑓. Vff) 

2.36  

 

Equation 2.37 can be used to represent the current produced by varying gap second 

mode electrodes. 

𝑖𝑜 =
𝜕𝐶

𝜕𝑥
. 𝑉𝑥. (𝑉𝑝𝑟𝑜𝑓 − 𝑆𝑃) 2.37  

2.4 Negative Spring Effect 

This section will examine the notion of negative spring effect. There are two essential 

spring constants in a micromachined gyroscope. These defines the first and second 

mode’s resonance frequency. Due to tolerances, the benefits of perfect matching 

cannot be reached when these springs are made using ordinary micromachining 

methods. However, mode matching may be accomplished by the use of negative 

spring effects at variable gap capacitive electrodes at second mode electrodes. 

Initially, the force created at the second mode electrodes will be examined, followed 

by the negative spring effect. The gyroscope frame is influenced by two forces. The 

mechanical force produced by mechanical springs is the primary force, whereas 

electrostatic forces are the secondary force. The corresponding expressions for these 

forces are Equation 2.38 and Equation 2.39. 

 

𝐹𝑚𝑒𝑐ℎ = −𝑘𝑚𝑒𝑐ℎ. (𝑥 − 𝑥0) 

 

2.38 

𝐹𝑒𝑙𝑒𝑐 = −
1

2
.
𝐴. Ɛ

𝑥2
. 𝑉2 

2.39  
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Since the mechanical frame is kept in its stable position by force feedback, the force 

equations can be linearized as in Equations 2.40 and 2.41. 

Combining these two forces yields the result shown in Equation 2.42. 

 

𝐹𝑚𝑒𝑐ℎ =
𝑑𝐹𝑚𝑒𝑐ℎ
𝑑𝑦

. 𝑦 = −𝑘𝑚𝑒𝑐ℎ. 𝑦 
2.40 

 

 

𝐹𝑒𝑙𝑒𝑐 =
𝑑𝐹𝑒𝑙𝑒𝑐
𝑑𝑦

. 𝑦 =
1

2
.
𝐴. Ɛ

𝑦03
. 𝑦. 𝑉2 

 

2.41  

𝐹𝑚𝑒𝑐ℎ + 𝐹𝑒𝑙𝑒𝑐 = −𝑘𝑚𝑒𝑐ℎ. 𝑦 +
1

2
.
𝐴. Ɛ

𝑦03
. 𝑦. 𝑉2 = −𝑘𝑒𝑓𝑓. 𝑦 

 

2.42 

The only way to take advantage of the spring softening effect is to alter the applied 

DC voltage on the variable gap electrodes as shown in Equation 2.43. This will lower 

the effective resonance frequency of the mechanical system. 

𝜔𝑠 = √
𝑘𝑒𝑓𝑓

𝑚
=
√
𝑘𝑚𝑒𝑐ℎ −

1
2 .
𝐴. Ɛ
𝑦03

. 𝑉2

𝑚
 

2.43 

 

2.5 Quadrature Offset 

The coupling of the first mode displacement onto the second mode results in 

quadrature offset. Manufacturing tolerances cause this coupling, but this quadrature 

offset signal is the Coriolis signal with a 90° phase shift. Phase sensitive 

demodulation is the primary technique for canceling this offset, however phase errors 
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and the  environmental error result in MEMS gyroscopes with reduced performance. 

In addition to the modulation technique, several approaches were created. The 

electrostatic quadrature reduction technique is the most efficient approach. Figure 

2.5 shows the implementation structure of this offset reduction approach with a few 

electrodes. 

 

Vproof

-∆V

-∆V

+∆V

+∆V

 

Figure 2.5.   Structure of an electrostatic quadrature offset cancellation electrode. 

 

In Figure 2.5, the proof mass moves along the x-axis. This motion causes a force in 

the y direction on the proof mass, which can be represented by Equation 2.44. 

 

𝐹𝑦 =
1

2
.
𝑑𝐶

𝑑𝑦
. 𝑉2 

 

2.44  

Figure 2.5 depicts four capacitors that produce a force that is in phase with the 

quadrature offset and can be used as a suppression force. 
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𝐹𝑦 = 𝐹𝑞𝑢𝑎𝑑𝑐𝑎𝑛𝑐𝑒𝑙

=
1

2
.
Ɛ. (𝐿 − 𝑋). ℎ

(𝑦0 − 𝑦)2
. (𝑉𝐷𝐶 + ∆V)2

−
1

2
.
Ɛ. (𝐿 − 𝑋). ℎ

(𝑦0 + 𝑦)2
. (𝑉𝐷𝐶 − ∆V)2

+
1

2
.
Ɛ. (𝐿 + 𝑋). ℎ

(𝑦0 − 𝑦)2
. (𝑉𝐷𝐶 − ∆V)2

−
1

2
.
Ɛ. (𝐿 + 𝑋). ℎ

(𝑦0 + 𝑦)2
. (𝑉𝐷𝐶 + ∆V)2 

 

2.45  

Equation 2.46 shows how to adjust the previous quadrature cancellation force 

equation for a tiny y-direction change. 

𝐹𝑦 = 𝐹𝑞𝑢𝑎𝑑𝑐𝑎𝑛𝑐𝑒𝑙 = −
4. Ɛ. 𝑉𝐷𝐶 . ∆V. 𝑋. ℎ

𝑦02
 

 

2.46  

In conclusion, only DC voltage was used to produce this AC force. 

2.6 Mode Matching 

MEMS gyroscopes have been used in tactical implementations where light weight 

and small size are critical. MEMS gyroscope performance, on the other hand, nearly 

met the requirements for navigation level applications. MEMS gyroscopes often 

meet these requirements by incorporating unique control loops that boost the noise 

performance of the device. It is known that the noise performance of a MEMS 

gyroscope is enhanced by matching the resonance frequencies of the first and 

second modes. In addition to mechanical Brownian noise, electrical noise is present 

in gyroscope systems. Usually, electrical noise rather than mechanical noise is what 

limits the performance of high-performance gyroscope systems. The first and second 

modes' specified mode matching boosts both the mechanical signal and the signal-
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to-electrical noise ratio, enhancing the performance of the electrical noise restricted 

gyroscope system to meet navigation level criteria. 

 

In a MEMS gyroscope system, rate information is obtained by the Coriolis effect 

coupling of the displacement of the first mode to the mass of the second mode. The 

coupling force is in phase with the first mode's motion, but the second mode signal 

will only receive this force if the first and second modes' resonance frequencies are 

within a certain range. The second mode signal is the first mode signal's 90 degree 

phase-shifted counterpart when the second mode's resonance frequency exceeds the 

first mode's resonance frequency. When the mode is matched, the modulation 

process is distinct because of a shift in the transfer function of the mechanical 

gyroscope's underlying mechanism. The rate information is obtained in a mode-

matched scenario by modulating the second mode signal with the first mode signal. 

The signal-to-noise ratio is better than in the mismatched case because of mode-

matching. 

Implementing the mode-matching for high Q sensors, which require a frequency 

mismatch of less than a fraction of a hertz (Hz), is not an easy task, since 

manufacturing limitations place a limit on how near these frequencies can be 

consistently manufactured. Unfortunately, post-fabrication and once-off tuning 

approaches [26], [27] fall short of this criterion because they do not account for 

temperature and age-dependent fluctuations. While out-of-band pilot tones [29] and 

perturbation-based extremum seeking [28] are two methods that have been 

investigated for satisfying the continuity of mode matching, in both of them the 

perturbation signal is not fully decoupled from the angular rate control loop, 

requiring a frequency that is greater than 10 times the bandwidth of the angular rate 

control loop and leading to a significant loss of mechanical gain for the sensor in the 

mode-matching control loop. By including an AC signal in the quadrature control 

loop and observing the phase relationships between this signal and the signal from 
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the first mode, it is suggested that a different automated mode-matching system may 

be put into practice [30]. 

2.7 Conclusion 

This chapter provided a comprehensive investigation of the fictional Coriolis Force 

and the modeling of the MEMS gyroscope. The MEMS gyroscope's capacitive 

actuation and sensing mechanisms are also described. In relation to the resonance 

frequency, the mode-matching mechanism, the electrostatic spring softening action, 

is thoroughly discussed. The mechanism for quadrature cancellation is then studied. 

Finally, the mode-matching system and its benefits are described, followed by the 

literature. 
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CHAPTER 3  

3 FM GYROSCOPE 

The operation of a FM gyroscope is depended on the modulation of resonance 

frequency by the angular rate [13]. Measurements of frequencies using a stable 

reference clock can acquire this frequency modulation. This ratio-metric readout 

naturally has less sensor parameter dependency, which reduces error terms in the 

bias and scale factor [12], because angular rate is itself a frequency. 

While the first channel acts as an oscillator in traditional AM gyroscopes, the second 

channel serves merely as a sensory element. Nonetheless, with FM gyroscopes, both 

axes serve as oscillators. Comparing the online mode matching of FM and AM 

gyroscopes reveals that the online mode matching of FM gyroscopes is easier. 

MEMS Rate gyroscopes have proven challenging to design mode-matching loops 

for. With AM gyroscopes, it's difficult to directly see the natural frequency since, at 

zero rate, the energy in the sensing mode is zero. To monitor the sense-axis dynamics 

off-resonance, pilot tones have been utilized, although they provide only a moderate 

degree of mode-matching frequency precision [14]. An alternative automatic mode-

matching method is possible by incorporating an AC signal into the quadrature 

control loop and watching the phase connections between this signal and the driving 

signal [30]. However, this mode matching is also insufficient for matching the 

frequency of an extremely high Q resonator. 

The FM gyroscope [15] is able to solve these issues since it can keep oscillating 

along all two of its axes. The FM gyroscope scale factor is proven to be independent 

of the mechanical damping and electromechanical coupling characteristics of the 

MEMS device, making mode-matching a simple task to do. 
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The dynamics of coupled oscillators acting as a gyroscope are explored in this 

chapter. 

3.1 2 DOF Gyroscope 

Below is a description of the electro-mechanical matrices for a 2-DOF 

coupled oscillators. 

M as a mass matrix:  

𝑀 = [
𝑚𝑥𝑥 0
0 𝑚𝑦𝑦

] 

 

3.1  

B as a damping matrix: 

 

𝐵 = [
𝑏𝑥𝑥 𝑏𝑥𝑦
𝑏𝑦𝑥 𝑏𝑦𝑦

] 

 

3.2 

K as a spring matrix: 

 

𝐾 = [
𝑘𝑥𝑥 + 𝑘𝑥𝑡𝑢𝑛𝑒 𝑘𝑥𝑦

𝑘𝑦𝑥 𝑘𝑦𝑦 + 𝑘𝑦𝑡𝑢𝑛𝑒
] 

 

3.3  

O as a rate matrix: 

 

𝑂 = [
0 2𝑚𝛼𝑧

−2𝑚𝛼𝑧 0
] 

 

3.4  
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q as a position vector: 

 

𝑞 = [
𝑥
𝑦] 

 

3.5  

 

F as a force matrix 

 

𝐹 =

[
 
 
 
 𝐹𝑥𝑣

𝑥̇

𝑉𝑥
+ 𝐹𝑥𝑑

𝑥

𝐴𝑥

𝐹𝑦𝑣
𝑦̇

𝑉𝑦
+ 𝐹𝑦𝑑

𝑦

𝐴𝑦]
 
 
 
 

 

 

3.6  

Where 𝑉𝑥, 𝐴𝑥, 𝑉𝑦, and 𝐴𝑦 are the oscilation magnitudes for the displacement and 

velocity of the device. 

The matrix form of the motion equations is expressed as: 

 

𝐹 = 𝑀𝑞̈ + (𝐵 + 𝑂)𝑞̇ + 𝐾𝑞 

 

3.7  

The equations of motion shown below can be obtained by importing Equations 3.1 

through 3.6 into Equation 3.7. 

  

𝑚𝑥𝑥𝑥̈ +  (𝑏𝑥𝑥 − 
𝐹𝑥𝑣
𝑉𝑥
) 𝑥̇ + (𝑘𝑥𝑥 − 

𝐹𝑥𝑑
𝐴𝑥

+ 𝑘𝑥𝑡𝑢𝑛𝑒) 

+ 𝑘𝑥𝑦𝑦 + (𝑏𝑥𝑦 + 2𝑚𝛼𝑧)𝑦̇ = 0 

 

3.8  
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𝑚𝑦𝑦𝑦̈ + (𝑏𝑦𝑦 − 
𝐹𝑦𝑣

𝑉𝑦
) 𝑦̇ + (𝑘𝑦𝑦 − 

𝐹𝑦𝑑

𝐴𝑦
+ 𝑘𝑦𝑡𝑢𝑛𝑒) 

+ 𝑘𝑦𝑥𝑥 + (𝑏𝑦𝑥 − 2𝑚𝛼𝑧)𝑥̇ = 0 

 

3.9  

 

As can be observed, these coupled forces have the ability to modify the effective 

damping and spring constant. The damping is modulated if it is in-phase with the 

velocity. The stiffness is modulated, if the coupled force and displacement are in 

phase.  

By using normalized displacement and velocity components for any conceivable 

phase difference between the x and y channel displacement ∅𝑥𝑦, we may decompose 

the coupling forces into the displacement and velocity components of the 

corresponding oscillator. 

 

𝑦 = 𝑥
𝐴𝑦

𝐴𝑥
cos(∅𝑦𝑥) + 𝑥̇

𝐴𝑦

𝑉𝑥
sin(∅𝑦𝑥) 

3.10  

 

𝑦̇ = 𝑥̇
𝑉𝑦

𝑉𝑥
cos(∅𝑦𝑥) −  𝑥

𝑉𝑦

𝐴𝑥
sin(∅𝑦𝑥) 

3.11  

 

𝑥 = 𝑦
𝐴𝑥
𝐴𝑦

cos(∅𝑥𝑦) + 𝑦̇
𝐴𝑥
𝑉𝑦
sin(∅𝑥𝑦) 

3.12  

 

𝑥̇ = 𝑦̇
𝑉𝑥
𝑉𝑦
cos(∅𝑥𝑦) −  𝑦

𝑉𝑥
𝐴𝑦

sin(∅𝑥𝑦) 
3.13  
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The effective damping and spring constant terms can be expressed by using the 

equations from 3.8 to 3.13 as below 

 

 

𝑘𝑥𝑒𝑓𝑓 = 𝑘𝑥𝑥 − 
𝐹𝑥𝑑
𝐴𝑥

+ 𝑘𝑥𝑡𝑢𝑛𝑒 + 
𝐴𝑦

𝐴𝑥
𝑘𝑥𝑦 cos(∅𝑥𝑦)

+ 
𝑉𝑦

𝐴𝑥
𝑏𝑥𝑦 sin(∅𝑥𝑦) +  2𝑚𝛼𝑧

𝑉𝑦

𝐴𝑥
sin(∅𝑥𝑦) 

3.14  

 

𝑘𝑦𝑒𝑓𝑓 = 𝑘𝑦𝑦 − 
𝐹𝑦𝑑

𝐴𝑦
+ 𝑘𝑦𝑡𝑢𝑛𝑒 + 

𝐴𝑥
𝐴𝑦

𝑘𝑦𝑥 cos(∅𝑦𝑥)

+ 
𝑉𝑥
𝐴𝑦

𝑏𝑦𝑥 sin(∅𝑦𝑥) −  2𝑚𝛼𝑧
𝑉𝑥
𝐴𝑦

sin(∅𝑦𝑥) 

3.15  

 

𝑏𝑥𝑒𝑓𝑓 = 𝑏𝑥𝑥 − 
𝐹𝑥𝑣
𝑉𝑥

+ 
𝑉𝑦

𝑉𝑥
𝑏𝑥𝑦 cos(∅𝑥𝑦) − 

𝐴𝑦

𝑉𝑥
𝑘𝑥𝑦 sin(∅𝑥𝑦)

+  2𝑚𝛼𝑧
𝑉𝑦

𝑉𝑥
cos(∅𝑥𝑦) 

3.16  

 

𝑏𝑦𝑒𝑓𝑓 = 𝑏𝑦𝑦 − 
𝐹𝑦𝑣

𝑉𝑦
+ 
𝑉𝑥
𝑉𝑦
𝑏𝑦𝑥 cos(∅𝑦𝑥) − 

𝐴𝑥
𝑉𝑦
𝑘𝑦𝑥 sin(∅𝑦𝑥)

+  2𝑚𝛼𝑧
𝑉𝑥
𝑉𝑦
cos(∅𝑦𝑥) 

3.17  

 

There are 4 unknowns and 4 equations  from 3.14 to 3.17. Force and oscillation 

frequencies can be calculated using these formulas. 

At first, force calculations will be conducted. For a sustained oscillation, damping 

term should be zero. 𝐹𝑥𝑣 and 𝐹𝑦𝑣 can be found as follow: 
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𝐹𝑥𝑣 = 𝑏𝑥𝑥𝑉𝑥 + 𝑉𝑦𝑏𝑥𝑦 cos(∅𝑥𝑦) − 𝐴𝑦𝑘𝑥𝑦 sin(∅𝑥𝑦)

+  2𝑚𝛼𝑧𝑉𝑦 cos(∅𝑥𝑦) 

3.18  

 

𝐹𝑦𝑣 = 𝑏𝑦𝑦𝑉𝑦 + 𝑉𝑥𝑏𝑦𝑥 cos(∅𝑦𝑥) − 𝐴𝑥𝑘𝑦𝑥 sin(∅𝑦𝑥)

+  2𝑚𝛼𝑧𝑉𝑥 cos(∅𝑦𝑥) 

3.19  

 

In order to sense the frequency of the FM gyroscope, the instantaneous oscillation 

frequency should be found. This can be calculated by using the effective spring 

constant and mass of the resonan mode as √
𝑘𝑒𝑓𝑓

𝑚⁄  . It is well known that the 

mechanical spring constants control the nominal oscillation frequency. Thus, by 

expanding the Taylor series at the mechanical resonance frequencies, the 

instantaneous oscillation frequencies are obtained as 

𝜔𝑥 =
√𝑘𝑥𝑒𝑓𝑓

𝑚𝑥𝑥
⁄ = 𝜔𝑜𝑥 + 

𝑘𝑥𝑒𝑓𝑓
2𝑚𝜔𝑜𝑥

 

 

3.20  

 

𝜔𝑦 = √
𝑘𝑦𝑒𝑓𝑓

𝑚𝑦𝑦
⁄ = 𝜔𝑜𝑦 + 

𝑘𝑦𝑒𝑓𝑓
2𝑚𝜔𝑜𝑦

 

 

3.21  

The following are the detailed expressions for the instantaneous frequencies: 
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𝜔𝑥 = 𝜔𝑜𝑥 − 
𝐹𝑥𝑑
2𝑚𝑉𝑥

+
𝑘𝑥𝑡𝑢𝑛𝑒
2𝑚𝜔𝑜𝑥

+ 
𝐴𝑦

2𝑚𝑉𝑥
𝑘𝑥𝑦 cos(∅𝑥𝑦)

+ 
𝑉𝑦

2𝑚𝑉𝑥
𝑏𝑥𝑦 sin(∅𝑥𝑦) +  𝛼𝑧

𝑉𝑦

𝑉𝑥
sin(∅𝑥𝑦) 

 

3.22  

 

𝜔𝑦 = 𝜔𝑜𝑦 − 
𝐹𝑦𝑑

2𝑚𝑉𝑦
+
𝑘𝑦𝑡𝑢𝑛𝑒
2𝑚𝜔𝑜𝑦

+ 
𝐴𝑥
2𝑚𝑉𝑦

𝑘𝑦𝑥 cos(∅𝑦𝑥)

+
𝑉𝑥

2𝑚𝑉𝑦
𝑏𝑦𝑥 sin(∅𝑦𝑥) −  𝛼𝑧

𝑉𝑥
𝑉𝑦
sin(∅𝑦𝑥) 

3.23  

 

 

When we sum 𝜔𝑥 and 𝜔𝑦, we can obtain the rate related output from FM gyroscope. 

However, some of the offset signal caused by non-ideal coupling can be suppressed 

by changing the phase of the ∅𝑥𝑦. We can get the rate-related output from the FM 

gyroscope by adding 𝜔𝑥 and 𝜔𝑦. However, by manipulating the phase of the ∅𝑥𝑦, 

signals resulting from the imperfect coupling may be eliminated. Additionally, as 

demonstrated by Equation 3.22 and Equation 3.23, there is a substantial benefit over 

force sensing because the angular gain determine the scale factor for frequency 

output. 

If there is no active tuning on free running two resonant modes, we can obtain the 

scale factor expression including oscillation amplitude dependance as follow 

 

𝑆𝐹 = 𝛼𝑧
𝑑∑

𝑑
= 𝛼𝑧 (

𝑉𝑦

𝑉𝑥
+ 
𝑉𝑥
𝑉𝑦
) 

3.24  
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Using one of the channels as a master resonator and locking the second resonator to 

it, then the scale scale factor will be 𝛼𝑧 𝑉𝑥 𝑉𝑦⁄ , as stated in the formula below. 

𝑆𝐹 = 𝛼𝑧 ( 
𝑉𝑥
𝑉𝑦
) 

3.25  

 

3.2 Lissajous FM Gyroscope 

Any variations to the resonance frequency appear as rate instability in a standard FM 

gyroscope operation. Mode-reversal approach can be employed to cancel these 

resonant frequency components. First and second modes are switched to cancel out 

any common terms in this mode reversal procedure, however the rate of change is 

constrained by the oscillator sustaining loop's slew rate. Another way to increase the 

rate of mode-reversal is to alternate between the states continuously without ever 

consciously draining the gyroscope of energy. This is possible if both axes are 

continuously excited while only the phase relationship between the two oscillations 

is controlled. A predetermined frequency split that also affects the phase at the mode-

split frequency can be used to adjust the phase difference. Lissajous Frequency 

Modulated (LFM) Gyroscope is the name of this technique. Two structures in the 

(LFM) gyroscope with proof masses circling in opposite directions negate 

temperature-related changes in the resonant frequency. In its operation, the two 

oscillation modes are oscillated and locked with a digital PLL inside the loop. The 

PLLs inside the two oscillating loops provide the direct frequency reading from the 

oscillators. After we obtain the oscillation frequencies, frequency split is adjusted by 

tuning the prof mass of the second mode to pre-defined frequency.  

The instantaneous frequencies of the two modes can be expressed as below: 
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∅̇𝑥 = 𝜔𝑜𝑥 − 𝛼𝑧
𝑉𝑦

𝑉𝑥
𝑧 sin∅𝑥𝑦 (3.26) 

 

∅̇𝑦 = 𝜔𝑜𝑦 − 𝛼𝑧
𝑉𝑥
𝑉𝑦

𝑧 sin∅𝑥𝑦 (3.27) 

 

The frequency sum gives the rate dependent out as in Equation below. However, this 

equation has very high DC component coming from the mechanical resonant 

frequencies. 

 

∑∅̇𝑥𝑦 = 𝜔𝑜𝑥 + 𝜔𝑜𝑦 − (
𝑉𝑦

𝑉𝑥
+
𝑉𝑥
𝑉𝑦
)𝛼𝑧𝑧 sin∅𝑥𝑦 (3.28) 

 

In order to suppress the DC component of the sum of frequencies, very low cut-off 

frequency high pass filter is used. After filtering the signal, we have rate signal 

modulated by the phase difference between the modes. 

This signal can be modulated with the sine of the phase difference to reveal rate 

information. In an analog PLL driven systems, the acquisition of the phase is difficult 

to obtain; but in the digital PLL, we can acquire the phase difference from the 

software. After doing the modulation we have obtained the signal below: 

 

sin∅𝑥𝑦 ℎ𝐻𝑃𝐹∑∅̇𝑥𝑦 ≈ − 
1

2
(
𝑉𝑦

𝑉𝑥
+
𝑉𝑥
𝑉𝑦
)𝛼𝑧𝑧(1 − cos 2∅𝑥𝑦) (3.29) 

 

Now, we have obtained the rate data with DC and cos 2∅𝑥𝑦 components. At the 

modulator's output, a low pass filter can be used to suppress the image at 2∅𝑥𝑦. 

Finally, we get the rate out from the frequency outputs as follow: 



 

 

38 

 

ℎ𝐿𝑃𝐹 (sin∅𝑥𝑦 ℎ𝐻𝑃𝐹∑∅̇𝑥𝑦) ≈ − 
1

2
(
𝑉𝑦

𝑉𝑥
+
𝑉𝑥
𝑉𝑦
)𝛼𝑧𝑧 (3.30) 

 

Thus, in this equation, phase is the directly related with the velocity ratios and the 

angular gain. Therefore, we obtained a very short definition of the rate that has very 

low mechanical and electrical disturbances. 
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CHAPTER 4  

4 PERFORMANCE ANALYSIS 

Due to frequency output of FM gyroscope, phase noise dominates the major angular 

random walk (ARW) performance of the gyroscope. It is essential to determine the 

relative weights of various physical noise sources, since their effects on the overall 

performance of the system vary. Meantime, the combinations of these many sources 

will result in non-linear frequency jitter, which may degrade the overall performance 

of the system. 

4.1 Oscillator 

As illustrated in Figure 4.1, the most general definition of an oscillator is a closed 

loop of a non-linear circuit with frequency dependency subsystem. G(ω,A) is the 

block's transfer function, while A and ω are its amplitude and frequency. 

If the circuit has a small bandwidth, the system changes into a harmonic 

type oscillating system having sinus shaped signal. At frequency ωs, stable 

oscillations with an amplitude As are possible. 

 

Figure 4.1. Oscillator generic representation 

 

𝐺(𝜔𝑠, 𝐴𝑠)=1 (4.1) 
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Nevertheless, this is only viable under two essential criteria. The first condition is 

the stability of the phase. [22] 

 

𝑑(𝑎𝑟𝑔𝐺)

𝑑𝜔
|𝜔𝑠,𝐴𝑠 < 0 

(4.2) 

  

If this condition is not satisfied, no periodic solution may be kept. The second need 

is amplitude stability. 

 

𝑑|𝐺|

𝑑𝐴
|𝜔𝑠,𝐴𝑠 < 0 

(4.3) 

 

In this case, a nonlinearity in the circuit block is required to fix the amplitude of the 

oscillation. 

Because every oscillator is a continuously changing system, it is vital to account for 

this aspect in order to appropriately explain phase noise. The time-variant model, in 

contrast to linear and time-invariant ones, can accurately measure phase noise by 

incorporating stationary and cyclostationary noise sources. 

The two different forms of noise producers in a circuit are circuit noise and 

disturbance. Examples of the former include thermal noise, flicker noise, and shot 

noise. This model integrates earlier models as particular limiting circumstances and 

discusses in detail how random or deterministic sources, are affected into amplitude 

and phase noises. 
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4.2 Phase Noise in Linear Circuits 

The amplitude and phase of an oscillator's output can be affected by noise in the 

circuit and device. However, most real oscillators must incorporate an amplitude 

control system. Because amplitude variations are often muffled, phase noise 

generally takes precedence. 

The amplitude of an oscillator is accurately determined and is regulated by the 

circuit's nonlinearity. If there is an amplitude disturbance, the oscillator will reject it 

automatically. 

The oscillation happens at a frequency where the loop gain is unity, which results in 

this. Non-compressive linearity's properties cause the loop multiplication to decrease 

and the oscillation amplitude to decrease as the amplitude rises. 

Oscillator having phase shift has a viable correction. Due to the lack of "restoring 

force," the phase distortion continues if a disturbance causes the oscillator to shift 

phase. 

To investigate the phase noise of an oscillator in a linear circuit subject to time-

invariant noise sources, Leeson's classical approach [23] may be utilized. In a steady 

state of oscillation, the circuit model of the oscillator is shown in Figure 4.2. 

The resonator's associated with motional resistance Rm is connected to a noise 

voltage with a 4kTRm noise density. Spectral density 𝑆𝑉𝑛2 's open loop real component 

of the method which enables during continuous oscillation, which is equal to 𝑅𝑚, 

may thus be connected to noise voltage 𝑉𝑛. 

 

𝑆𝑉𝑛2 = 4𝑘𝑇𝛾𝑅𝑚 (4.4) 

 

Where  represents an excess factor of noise that is proportional to the circuit's 

individual noise contributions. 
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In a state of steady oscillation, the impedance ZL generated by the resonator's 

movable components Lm and Cm, as well as the circuit's capacitance Cc, is the 

impedance required to load a noise voltage source with a spectral density of 

4kTRm(1+). 

 

 

Figure 4.2. The circuit model of the oscillator in a steady state of oscillation[23]. 

The formula for steady oscillation's frequency is 

 

𝜔𝑠 = 2𝑓𝑠 =
1

√𝐿𝑚(𝐶𝑚     𝐶𝑐)
 (4.5) 

 

Consequently, one might write down the loading impedance for noise sources as 

 

  𝑍𝐿 = 𝑗𝜔𝑛𝐿𝑚 +
1

𝑗𝜔𝑛(𝐶𝑚     𝐶𝑐)
=  𝑗𝜔𝑛𝐿𝑚

(𝜔𝑛+𝜔𝑠)(𝜔𝑛−𝜔𝑠)

𝜔𝑛
2      (4.6) 

  

where 𝜔𝑛 is the frequency at which noise is evaluated. 

For very low frequency difference, the load impedance can be defined by 

𝑍𝐿 =  2𝑗𝜔𝐿𝑚
(𝜔𝑛 − 𝜔𝑠)

𝜔
=  2𝑗𝜔𝑄𝑅𝑚

(𝜔𝑛 − 𝜔𝑠)

𝜔
  (4.7) 
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The noise current InL flowing through the loop's power spectral density is then 

calculated. 

𝑆𝐼𝑛𝐿2 = 
4𝑘𝑇(1 +  )𝑅𝑚

|𝑍𝐿|2
= 
𝑘𝑇(1 +  )

𝑄2𝑅𝑚
(
𝜔

∆𝜔
)
2

 (4.8) 

 

where ∆𝜔 is the difference between the stable oscillation frequency 𝜔𝑠 and the noise 

frequency 𝜔𝑛 

The oscillation (motional) current 𝐼𝑚 is combined with this noise current. The 

associated complex phasors for a fundamental bandwidth 𝑑𝑓 at an angular frequency 

𝜔 are shown in Figure 4.3 at a certain time. The noise phasor's length, denoted by 

𝑑𝐼𝑛, is a random number with variance 𝑆𝐼𝑛𝐿2 . 

 

 

Figure 4.3. Elementary noise currents dInL and complex phasors of oscillation 

current Im at a certain time. 

 

𝑑𝐼𝑛 has a component on both amplitude and phase noise. If we assume 𝑑𝐼𝑛 is totally 

white noise, then due to the equipartition theorem of thermodynamics, the powers of 

phase and amplitude noise are equal. Because of the automatic amplitude controllers 

in the oscillators, the oscillator's amplitude noise is eliminated, leaving only the 

remaining half of the 𝑆𝐼𝑛𝐿2  noise. 

Considering that the noise current is small in comparison to the motional current, we 

can now evaluate the phase noise ∅𝑛. 
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𝑆∅𝑛2 = 

1
2 𝑆𝐼𝑛𝐿

2

(
|𝐼𝑚|

√2
)
2 = 

𝑘𝑇(1 +  )𝜔2

𝑄2𝑅𝑚|𝐼𝑚|2∆𝜔2
 (4.9) 

 

The power spectrum of phase noise is thus proportional to 
1

∆𝜔2. Sφn is inversely 

related to both the energy of the oscillation and the quality factor for a particular 

oscillation frequency. 

The phase noise power spectrum is therefore inversely proportional to 
1

∆𝜔2
. 𝑆∅𝑛2  is 

inversely proportional to both the oscillation's energy and the quality factor for a 

certain oscillation frequency. 

Figure 4.4 depicts a typical frequency spectrum from the oscillator of an FM 

gyroscope and its accompanying phase noise spectrum. The bias instability and 

resolution of the FM gyroscope are defined, respectively, by the frequency noise in 

the 1/f region and the white noise floor. These metrics may be examined using the 

three frequency spectrum areas. 

 

Figure 4.4. Frequency noise density of FM gyroscope’s oscillator. 
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4.3 Phase Noise in Non-Linear Circuits 

Numerous research [23], [24] have subsequently focused on phase and frequency 

variations. Although several models have been established for various kinds of 

oscillators, each model contains assumptions that are relevant to just a subset of 

oscillators. Most of these models are based on the linear time invariant system 

assumption, which leaves out the whole process by which electrical noise sources, 

including device noise, create phase noise. In specifically, they describe the up-

conversion of low frequency noise sources, such as close-in phase noise using an 

empirical method. As reduced-order models, these models are likewise unable to 

accurately anticipate phase noise in long ring oscillators or oscillators with crucial 

singularities, such as delay elements. 

Every oscillator is a regularly time-varying system, hence phase noise must be 

described in terms of the time-varying character of each oscillator. The time-variant 

model given here may accurately examine the effect of stationary and even cyclo-

stationary noise sources on phase noise, in contrast to models that assume linear and 

time-invariance. 

The circuit's noise sources can be classified into two categories: device noise and 

interfering noise. Thermal, flicker, and shot noise are examples of the first category, 

while substrate and supply noise are examples of the latter. The time-variant model 

describes the precise method by which random or deterministic spurious sources are 

turned into amplitude and phase changes. 

This time-variant model predicts explicitly the connection between waveform shape 

and 1/f noise up conversion. Contrary to popular assumption, it will be shown that 

the 1/f3 corner of the phase noise spectrum is smaller than the 1/f noise corner of the 

oscillator's components by a factor defined by the symmetries of the waveform. 

There is a significant distinction between the phase and amplitude responses of any 

actual oscillator, since an amplitude-limiting mechanism is required for steady 

oscillatory activity. The system state will eventually reach this trajectory, known as 
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a limit cycle, regardless of its initial condition. Nonetheless, any variation in the 

phase of the oscillation stays forever, with a current noise impulse resulting in a step 

shift in phase, as seen in Figure 4.5. 

The phase shift makes the circuit nonlinear, and the noise generated by the active 

components turns into cyclostationary. Using the impulse sensitivity function (ISF) 

proposed by Hadjimiri and Lee [25], phase noise may then be investigated. 

 

Figure 4.5. Time variant impulse effect on oscillator (a) Impulse injected at the peak, 

(b) impulse injected at the zero crossing [25]. 

 

An expression for the phase noise spectrum density due to the white noise voltage 

𝑉𝑛(𝑡) with spectral density 𝑆𝑉𝑛2 in this non-linear case is 

𝑆∅𝑛2 = 
𝛤𝑣2̅̅̅̅  𝑆𝑉𝑛2

2(𝐿𝑚|𝐼𝑚|)2∆𝜔2
 (4.10) 

 

Using the effective impulse sensitivity function (ISF) 𝛤𝑣 defined for the sinusoidal 

current |𝐼𝑚| cos ∅ by 
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𝛤𝑣  =  − sin∅ ∙ 𝛼𝑣(∅) (4.11) 

 

Spectrum density of phase noise 
𝐾f v

𝜔𝑛
 from 

1

𝑓
 flicker noise voltage source: 

 

𝑆∅𝑛2 = 
𝛤𝑣2 ∙̅̅ ̅̅ ̅ 𝐾f v

(𝐿𝑚|𝐼𝑚|)2∆𝜔3
 (4.12) 

 

Thus, non-linearity in the oscillator heavily affects the 
1

𝑓3
 region of the phase 

spectrum. However, in a FM gyroscope operated with Lissajous Pattern Method, 
1

𝑓3
 

region is eliminated by using chopping feature. Because of that, phase noise model 

in linear circuits model will be enough for the performance analysis. 

As a result, the 
1

𝑓3
 region of the phase spectrum is profoundly impacted by non-

linearity in the oscillator. In contrast, the 
1

𝑓3
 region is eliminated in a FM gyroscope 

that is controlled using the Lissajous Pattern Method thanks to the chopping function. 

Therefore, the performance analysis can be done using just the phase noise model in 

the linear circuits model. 

 

4.4 Phase Noise Calculation for Oscillator with Analog Gain Control 

Phase noise calculation of this type of oscillator can be done by modelling RLC 

circuit model as impedance around oscillation frequency. In Equation 4.13, the 

simplified base-band model was expressed.  
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The impedance of the MEMS resonator: 

 

𝑍𝐿 =  2𝑗𝜔𝐿𝑚
(𝜔𝑛 − 𝜔𝑠)

𝜔
=  2𝑗𝜔𝑄𝑅𝑚

(𝜔𝑛 − 𝜔𝑠)

𝜔
  (4.13) 

 

The simplified circuit model of the linear oscillator with analog gain control can be 

seen at Figure 4.6.  This circuit have the base-band model for the resonator, 

Preamplifier with a gain of Zpre and an amplifier with a gain control as VGA.  

 

 

Figure 4.6. The simplified circuit model of the linear oscillator. 

To create oscillations that are self-sustaining, the electrical resistance seen by the 

resonator must negate the motional resistance: Rm = ZpreAv. After defining the gains, 

circuit parameters and noise sources, the effects of the noises at the output can be 

calculated as follow: 

𝑣̀𝑛𝑝𝑟𝑒  𝑖𝑠 𝑡he noise contribution of the vnpre at the output: 

𝑣̀𝑛𝑝𝑟𝑒 = 
𝑣𝑛𝑝𝑟𝑒

1 +
𝑅𝑚
𝑍𝑝𝑟𝑒

𝑍𝑝𝑟𝑒
𝑍𝐿

=  
𝑣𝑛𝑝𝑟𝑒

1 +
𝑅𝑚

2𝑄𝑅𝑚

= 
𝑣𝑛𝑝𝑟𝑒

1 +
1

2𝑄

 
(4.14) 
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𝑣̀𝑛𝑑𝑟𝑣 𝑖𝑠 𝑡he noise contribution of the 𝑣𝑛𝑑𝑟𝑣 at the output: 

𝑣̀𝑛𝑑𝑟𝑣 = 
𝑣𝑛𝑑𝑟𝑣  

𝑍𝑝𝑟𝑒
𝑍𝐿

1 +
1

2𝑄

= 
𝑣𝑛𝑑𝑟𝑣  

𝑍𝑝𝑟𝑒
2𝑄𝑅𝑚

1 +
1

2𝑄

=
𝑣𝑛𝑑𝑟𝑣𝑍𝑝𝑟𝑒  

2𝑄𝑅𝑚 + 𝑅𝑚
  (4.15) 

 

𝑣̀𝑛𝑟 𝑖𝑠 𝑡he noise contribution of the 𝑣𝑛𝑟 at the output: 

𝑣̀𝑛𝑟 = 
𝑣𝑛𝑟  

𝑍𝑝𝑟𝑒
𝑍𝐿

1 +
1

2𝑄

=
𝑣𝑛𝑟𝑍𝑝𝑟𝑒 

2𝑄𝑅𝑚 + 𝑅𝑚
= 

𝑣𝑛𝑟𝑍𝑝𝑟𝑒  

2𝑄𝑅𝑚 + 𝑅𝑚
 (4.16) 

 

The total noise at the output can be expressed below: 

𝑣𝑛𝑜𝑠𝑐
2 = 𝑣̀𝑛𝑟

2 + 𝑣̀𝑛𝑑𝑟𝑣
2 + 𝑣̀𝑛𝑝𝑟𝑒

2

= 
(
𝑍𝑝𝑟𝑒
𝑅𝑚

)
2

(𝑣𝑛𝑟
2 + 𝑣𝑛𝑑𝑟𝑣

2) + (2𝑄 𝑣𝑛𝑝𝑟𝑒)
2

(1 +  2𝑄)2
 

(4.17) 

 

We can compute the phase noise ∅𝑛 assuming that the noise current is small relative 

to the motional current as in Equation 4.9. In this equation, half of the noise power 

contributes the phase noise, the other half contributes the amplitude noise. Therefore, 

the half the total noise power should be in the phase noise calculation. The spot noise 

at frequencies of f0±f, on the other hand, is what produces the phase noise at a 

frequency offset of f. This additional 3dB noise penalty, which is based on the 

assumption that noise is white around f0, makes up for the prior 3dB drop. 

Consequently, it is easy to determine phase noise using the spot noise values of the 

noise sources. 

However, spot noise at frequencies of f0±f causes phase noise with a frequency 

offset of f. This is an additional 3dB noise increase, assuming white noise 
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surrounding f0. Thus, the following formula can be used to determine phase noise 

from the spot noise values of the noise sources. 

∅𝑛
2 =

𝑣𝑛𝑜𝑢𝑡
2

𝑖𝑟
2𝑍𝑝𝑟𝑒

2 =

(
1
𝑅𝑚

)
2

(𝑣𝑛𝑟
2 + 𝑣𝑛𝑑𝑟𝑣

2) + (
2𝑄 𝑣𝑛𝑝𝑟𝑒

𝑍𝑝𝑟𝑒
)
2

𝑖𝑟
2(1 +  2𝑄)2

 
(4.18) 

 

The output of the FM gyroscope is the frequency; Therefore, the frequency noise 

should be calculated from this phase noise. This can be accomplished by multiplying 

the phase noise with the  which is the frequency mismatch used for rate 

modulation. 

𝑛
2 = ∅𝑛

22 =

(

𝑅𝑚

)
2

(𝑣𝑛𝑟
2 + 𝑣𝑛𝑑𝑟𝑣

2) + (
2𝑄 2𝑣𝑛𝑝𝑟𝑒

𝑍𝑝𝑟𝑒
)

2

𝑖𝑟
2(1 +  2𝑄)2

 
(4.19) 

 

At low frequency split ,  noise is white and dominated by mechanical noises; but 

when the mode split is increased, frequency noise increases and this noise is 

dominated by electrical noise.  

A linear relationship between preamplifier noise and mode-split is given by Equation 

4.19. This performance is identical to that of standard AM gyroscopes. AM gyros 

are likewise related to the effects of Brownian noise and the expressions of feedback 

noise. If you want your system to perform as well as possible in terms of Brownian 

noise over a specific full-scale range, reducing mode-split and increasing motional 

current are both good places to start.  

Rate-referred noise can easily be found by dividing the frequency noise with the SF 

which is 𝛼𝑧 (
𝑉𝑦

𝑉𝑥
+ 

𝑉𝑥

𝑉𝑦
)for FM gyroscope. The noise in dps/rt-Hz can be expressed as 
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𝑛 [
𝑑𝑝𝑠

√𝐻𝑧
] =

𝜔𝑛
2𝜋𝑆𝐹

360
𝑑𝑝𝑠

√𝐻𝑧

=  

√
  
  
  
  
  

(

 
 
(

𝑅𝑚

)
2

(𝑣𝑛𝑟2 + 𝑣𝑛𝑑𝑟𝑣2) + (
2𝑄 2𝑣𝑛𝑝𝑟𝑒

𝑍𝑝𝑟𝑒
)
2

𝑖𝑟
2(1 +  2𝑄)2

)

 
 360

2𝜋

1

𝛼𝑧 (
𝑉𝑦
𝑉𝑥
+ 
𝑉𝑥
𝑉𝑦
)

 

(4.20) 

 

4.5 Phase Noise Calculation for Oscillator with Digital PLL 

There are two distinct excitation techniques employed in gyroscope functioning, 

both of which serve to maintain the driving mode in a resonant state. Resonance can 

be kept running via PLL or the self-oscillation technique. Digital PLL may be 

utilized as an alternative excitation technique for FM gyroscopes by tracking the 

gyroscope's resonance frequency; this frequency can then be used in subsequent 

signal processing to determine the angular rate without the requirement for dedicated 

frequency readout circuitry. There is also no need for specialized interface circuitry 

between the AM and FM modes and the digital PLL solution. 

Phase noise calculation of this type of oscillator can be done by modelling RLC 

circuit model as impedance around oscillation frequency as before.  

The simplified circuit model of the oscillator with digital PLL can be constructed as 

in Figure 4.7. 
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Figure 4.7. The simplified circuit model of the oscillator with digital PLL. 

 

The phase noise of this digital oscillator is similar with the linear oscillator. 

However, there are some extra noise sources coming from the ADC and DAC. At 

first, the noise contribution of the noise sources should be calculated. After that, the 

noise shaping of the PLL will be calculated with the controller parameters of the 

PLL. 

In order to sustain the oscillation, the gain of the automatic gain controller is same 

with the linear oscillator; because of that the total noise at the output of the ADC can 

be calculated as follow: 
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𝑣𝑛𝑜𝑠𝑐
2

= 
(
𝑍𝑝𝑟𝑒
𝑅𝑚

)
2

(𝑣𝑛𝑟
2 + 𝑣𝑛𝑑𝑟𝑣

2 + 𝑣𝑛𝑑𝑎𝑐
2) + (2𝑄)2( 𝑣𝑛𝑝𝑟𝑒

2 +  𝑣𝑛𝑎𝑑𝑐
2)

(1 +  2𝑄)2
 

(4.21) 

 

Phase noise can thus be calculated from the spot noise values of the noise sources as 

follow. 

∅𝑛
2 =

𝑣𝑛𝑜𝑠𝑐
2

𝑖𝑟
2𝑍𝑝𝑟𝑒

2

=

(
1
𝑅𝑚

)
2

(𝑣𝑛𝑟
2 + 𝑣𝑛𝑑𝑟𝑣

2 + 𝑣𝑛𝑑𝑎𝑐
2) + (

2𝑄 
𝑍𝑝𝑟𝑒

)
2

( 𝑣𝑛𝑝𝑟𝑒
2 +  𝑣𝑛𝑎𝑑𝑐

2)

𝑖𝑟
2(1 +  2𝑄)2

 

(4.22) 

 

At this point, we have calculated the phase noise contribution at the input of the PLL. 

Then, we will calculate the noise shaping characteristics and the output phase and 

frequency noise of the PLL by using closed loop transfer function. 

To calculate the transfer function of the PLL, PLL can be modelled as a linear closed 

loop system as in Figure 4.8. The details of the linearized model can be found at 

Chapter 5.  

 

Figure 4.8. The linearized PLL model. 

  

∅𝑛 ∅𝑜𝑢𝑡 



 

 

54 

The phase noise transfer function can be calculated by using the closed loop transfer 

function as follow:  

We assume the system is linear with regard to the phase relationship since both the 

noise input and the PLL output are phase signals and can be analyzed using the 

transfer function H(s). Furthermore, we will presume that the PLL is locked. 

 

𝐻(𝑠) =
∅𝑜𝑢𝑡(𝑠)

∅𝑛(𝑠)
 (4.23) 

 

As a result, H(s) is now a phase transfer function, and PLL is a phase-signal-

controlling mechanism. Consequently, the following expression for the transfer 

function is expressed by fundamentals of control theory: 

 

𝐻(𝑠) =
𝐾𝑝𝑑𝐹(𝑠)𝐾0

𝑠 +  𝐾𝑝𝑑𝐹(𝑠)𝐾0
 (4.24) 

 

The ∅𝑜𝑢𝑡  can be computed after we have the H(s). 

 

∅𝑜𝑢𝑡
2 = (

𝐾𝑝𝑑𝐹(𝑠)𝐾0

𝑠 +  𝐾𝑝𝑑𝐹(𝑠)𝐾0
)

2

 

(
1
𝑅𝑚

)
2

(𝑣𝑛𝑟
2 + 𝑣𝑛𝑑𝑟𝑣

2 + 𝑣𝑛𝑑𝑎𝑐
2) + (

2𝑄 
𝑍𝑝𝑟𝑒

)
2

( 𝑣𝑛𝑝𝑟𝑒
2 +  𝑣𝑛𝑎𝑑𝑐

2)

𝑖𝑟
2(1 +  2𝑄)2

 

 

(4.25) 
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Thus, the phase noise is band limited by use of PLL as in Equation 4.25. When the 

closed loop bandwidth of the PLL is increased the phase noise at the higher 

frequencies enters the loop and the integrated noise increases. 
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CHAPTER 5  

5 DIGITAL CONTROL SYSTEM IMPLEMENTATION AND TEST RESULTS 

The FM gyroscope takes a direct reading of the angular rate as a frequency and 

converts it to a digital signal by measuring it against a precise clock. The design of 

a FM gyroscope is primarily dependent on frequency reading performance, whereas 

amplitude is the most critical characteristic in an AM gyroscope. 

This chapter discusses the general structure of FM gyroscope, PLL design criterias, 

performance and noise calculations, and results. 

5.1 General Structure 

The FM gyroscope's functioning and computations have been covered in earlier 

chapters. The digitally implemented FM gyroscope will be explored in this chapter. 

This design employs a quad-mass non-symmetric tuning fork type MEMS gyroscope 

as a transducer. This transducer's two channels oscillated as a coupled oscillator with 

mismatched amplitude and defined frequency mismatch (f). 

The operation of the digitally controlled FM gyroscope includes two oscillator 

sustaining loops and other computation units realized with a 32-bit ARM M4 based 

digital microcontroller. Its operation starts with the conversion of the tiny currents 

generated by the motion of the resonators to the voltage. This conversion is done by 

using transimpedance type pre-amplifiers.  

After getting the voltage value, this signal is converted and acquired by the 

microcontroller by using a 16 bits SAR ADC operated at 240kSPS. To start the 

oscillation, standard automatic gain controller(AGC) structure is operated similar 

with analog counterpart. After reaching some level of oscillation, digital PLL starts 

its operation to lock the phase and frequency of the incoming signal. After locking 
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the frequency, automatic gain controller is stopped, and the operation of the PLL and 

automatic amplitude controller(AAC) are started to control the frequency and the 

oscillation amplitude simultaneously.  

The signals generated by the digitally controlled oscillator of the PLL  and the output 

of the AAC are multiplied to excite the resonator. The excitation signal is generated 

by using a 16 bits 8-channel DAC controlled by the microcontroller. This DAC is 

operated at 80kHz refresh rate. 

LFM control and computations are carried out after getting the sustained oscillations 

in the coupled oscillators of the FM gyroscope. 

The frequency split is controlled by frequency split controller, befor the computation 

of LFM. This is accomplished by reading the frequency data from the PLL and 

adjusting the second resonator's proof mass voltage. A DAC is also used to adjust 

the proof mass voltage. 

To obtain the rate information, the LFM computations are initiated after setting the 

frequency split to 20Hz. The sum of the frequencies is demodulated using the sine 

of the phase difference. The details will be discussed the preceding section to 

determine rate. 

The block diagram of the implemented digital FM gyroscope can be seen at  

Figure 5.1, including: 

 MEMS Structure,  

 Preamplifiers,  

 ADCs and DACs 

 Start-up Controller 

 Automatic Gain Controller (AGC) 

 Phase Locked Loop (PLL) 

 Automatic Amplitude Controller (AAC) 

 Frequency Split Controller (FSC) 

 Quadrature Controller (QC) 
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 Trigonometric Function Generator (TFG) 

 Lissajous FM Computation Unit (LCU)  

 

Figure 5.1. The block diagram of the digitally controlled FM gyroscope. 
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The Phase Locked Loop (PLL) is the most important component of this FM 

gyroscope because the output is frequency, and the frequency control and stability 

define the gyroscope's performance. 

The following part will go over the specifics of the PLL design and performance 

measurements. Furthermore, the LFM and noise performance calculations will be 

performed. 

5.2 PLL Design 

A Phase-locked loop is a system that allows one system to follow another. It 

synchronizes the phase and frequency of an output signal with a reference. Instead 

of seeing the two signals as functions of time, consider them as phasors on the 

complex plane. As complex phasors, the two signals are two vectors that revolve 

around the plane. In general, the phase at any given moment is dependent upon time. 

𝜃𝑛(𝑡) = ∫ 𝑛(𝑡)𝑑𝑡
𝑡

−∞

 (5.1) 

 

The phase is the main point of the PLL design. Consider the situation when the first 

vector rotates at a constant angular frequency, 1(𝑡) = 𝑐 . The second signal must 

modify its phase to reduce the distance from the reference, or the phase error, 

represented by the symbol 𝜃𝑒, in order to follow the input signal. Its angular 

frequency may be increased or decreased to change its phase. We say that two vectors 

are locked to one another when they are travelling at the same speed. Depending on 

the system architecture, the phase error between the two systems is either zero or 

constant in the locked state. A control system intervenes on the second system to 

reduce the phase error if the reference signal differs from its present angular 

frequency. 

Phase locked loops are mostly used in two areas. The PLL is required to demodulate 

the received signal back to baseband when analog signals are modulating a high-
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frequency carrier. The second use is in frequency synthesis, which is the process of 

producing signals with accurate and steady frequencies. 

5.2.1 Building Block of the PLL 

Linear PLLs is the first class of PLLs. Digital PLLs and All Digital PLLs are two 

additional PLL types. The software PLL (SPLL), which is the last class, is operating 

on a processor that is under the control of an appropriate program. 

To begin with, the linear PLL will be modeled in order to develop the PLL's theory. 

As shown in Figure 5.2, linear PLLs primarily consist of three components. It is 

necessary to first compare the phases of the reference input and the generated signal 

in some way. One method of doing that is to perform a straightforward multiplication 

followed by a filtering operation by the loop filter, which is the second part of the 

linear PLL. A voltage-controlled oscillator(VCO) is then fed with the filtered phase 

signal. 

 

Figure 5.2. Block diagram of a linear PLL. 

 

The Linear PLL is not as linear as one might assume given its name. However, as a 

first approximation, a linear model can be created.  
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5.2.2 PLL Linearization 

Given that the PLL's input and output are phase signals, we can analyze the system 

using the transfer function H(s). As a result, we view the system as linear in terms of 

phase relationships. Additionally, we consider the linear PLL to be locked. The 

transfer function is defined by the Laplace transforms of the input and output phase 

functions, θin(t) and θout(t), respectively. 

 

𝐻(𝑠) =
∅𝑜𝑢𝑡(𝑠)

∅𝑖𝑛(𝑠)
 (5.2) 

 

The function H(s) is now a phase transfer function, and the model only works when 

the phase of the reference signal changes by very small amounts; if the phase error 

is too great, the Linear PLL will unlock and a nonlinear process will occur. Despite 

the fact that this process is characterized by a nonlinear differential equation. 

We need to understand the transfer functions of the three Linear PLL building 

components, as shown in Figure 5.2, in order to express H(s). Since a PLL is nothing 

more than a control system for phase signals, we may use fundamental control theory 

to describe the linear model. 

5.2.3 Phase Detector Linearization 

The input to the phase detector is sine wave in FM gyroscope, 

 

𝑢𝑖𝑛(𝑡) = 𝑈𝑖𝑛 sin(𝜔𝑖𝑛𝑡 + 𝜃𝑖𝑛) (5.3) 

 



 

 

63 

The VCO signal is also sinusoidal wave with cos function to make the linearization 

easier, 

𝑢𝑓𝑏(𝑡) = 𝑈𝑓𝑏 cos(𝜔𝑓𝑏𝑡 + 𝜃𝑓𝑏) (5.4) 

 

The phase difference between two signals is calculated by multiplying them and then 

filtering the output. That is the phase detector's primary function. The behavior must 

be represented in a linear form. Assuming the PLL is near or locked in frequency, 

we have 𝜔 = 𝜔𝑖𝑛 = 𝜔𝑓𝑏 and the operation becomes 

 

𝑢𝑑(𝑡) = 𝑈𝑖𝑛 sin(𝜔𝑖𝑛𝑡 + 𝜃𝑖𝑛)𝑈𝑓𝑏 cos(𝜔𝑓𝑏𝑡 + 𝜃𝑓𝑏) (5.5) 

 

The equation above can be simplified by using the trigonometric relation below 

 

sin(𝛼) cos(𝛽) =  
1

2
(sin(𝛼 +  𝛽) + sin(𝛼 −  𝛽)) (5.6) 

 

The phase detector's output is as follows: 

 

𝑢𝑑(𝑡) =
𝑈𝑖𝑛𝑈𝑓𝑏

2
(sin(𝜃𝑖𝑛 + 𝜃𝑓𝑏 + 2𝜔𝑡) + sin(𝜃𝑖𝑛 − 𝜃𝑓𝑏)) (5.7) 

 

The phase detector output has DC and high frequency components. High frequency 

components will be filtered out by the next stage, because of that the simplified 

input/output relationship of the phase detector becomes 

𝑢𝑑(𝑡) = 𝐾𝑑 sin(𝜃𝑒) (5.8) 
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Sinusoidal signals can be linearized when the phase error is small 

 

𝑢𝑑(𝑡) ≈ 𝐾𝑑𝜃𝑒  (5.9) 

 

Thus, the linearized model is just a zero-order block having gain 𝐾𝑑 = 
𝑈𝑖𝑛𝑈𝑓𝑏

2
.  

 

5.2.4 Voltage Controlled Oscillator 

The VCO produces a sinusoidal signal whose frequency is proportional to the input 

signal level. It operates at a quiescent frequency 𝜔𝑐, preferably in close proximity to 

the signal we wish to lock on. VCO output is denoted by the VCO gain parameter 

𝐾0, the quiescent frequency 𝜔𝑐, and the VCO control input 𝑢𝑓. 

 

𝑢𝑜𝑢𝑡(𝑡) = cos (𝜔𝑐𝑡 + 𝐾0𝑢𝑓(𝑡)) (5.10) 

 

It can be freely chosen while creating the PLL in software because the filter design 

will support it.  

The purpose of the linearized modeling is to get the phase transfer function of the 

system. Therefore, phase information should be obtained from the VCO by 

integration of the frequency variation 𝐾0𝑢𝑓(𝑡). 

 

𝜃𝑜𝑢𝑡(𝑡) = ∫𝐾0𝑢𝑓(𝑡)𝑑𝑡 =  𝐾0 ∫𝑢𝑓(𝑡)𝑑𝑡  (5.11) 
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The integration's Laplace transform is 1/s. Consequently, the Laplace transform for 

the output phase 𝜃𝑜𝑢𝑡 is as follows: 

 

∅𝑜𝑢𝑡(𝑠) =
𝐾0

𝑠
𝑈𝑓(𝑠)  (5.12) 

 

Thus, the VCO is like an integrator in the phase control loop. 

 

5.2.5 Loop Filter 

The loop filter is used for filtering the high frequency components of the phase 

detector output; but it can also be used to control the VCO to decrease the phase 

error. The PLL is a control system for phase signals, the loop filter is the regulator. 

The loop filter maintains the desired phase delay and also reject the disturbances 

coming outside of the control system. When determining how well a regulator can 

cope with the two tasks several properties can be studied. Properties such as stability, 

speed, and static accuracy. 

 Stability 

This is most likely the most critical, and thus most complicated, component of the 

PLL. The model developed in this chapter can be used to analyze the stability of 

linear systems. Once the filter type is selected, stability difficulties are described 

further below. 

 Static Accuracy: 

The PLL is linearized and maintained at zero phase error. Because of the non-linear 

properties of the PLL, stability may be lost if the system has more phase error than 

it can handle. As a result, for every sort of input change, the error should be 
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asymptotically zero. Whatever action is taken at the input must be handled by the 

regulator. 

 Speed: 

The speed of a control system is another significant characteristic. When the desired 

value is modified in any way, it takes some time for the system's output to change 

and eventually settle at the new value. The rising time is one of the most common 

speed measurements. The rise time is defined as the amount of time required for the 

output to increase from 10% to 90% of its final value. The bandwidth is another 

speed metrics that defines the highest frequency that the system can follow. 

 

 Filter Type 

The output signal 𝑢𝑑(𝑡) of the phase detector consists of a number of terms. In the 

locked state of the PLL, the first of these is a DC component that is roughly 

proportional to the phase error 𝜃𝑒, the remaining terms are AC components. 

These high frequency terms must be filtered out by the loop filter. The loop filter 

must pass the lower frequency signal and suppress the higher, because of that it must 

have low pass filter characteristics. Best [31] mentions three basic filter types 

common in PLL applications:  the passive lead-lag filter, the active lead-lag filter, 

and the active PI filter. These filters can be used with a voltage output phase detector 

different from the charge pump type detectors. 

o Passive lead-lag filter 

First order passive lead-lag filter as in Figure 5.3 having one pole and one zero. The 

transfer function of this filter is as follow: 

 

𝐹(𝑠) =
𝑈𝑓(𝑠)

𝑈𝑑(𝑠)
=  

1 + 𝑠𝜏2
1 + 𝑠( 𝜏2 + 𝜏1)

 (5.13) 
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𝜏1 and 𝜏2 can be defined as 𝑅1𝐶1 and 𝑅2𝐶1 respectively. The phase lead 

characteristics comes from zero in the numerator, whereas the pole in the 

denominator produces the phase lag.  

 

 

Figure 5.3. Passive lead-lag filter. 

 

The amplitude and phase response of the passive lead-lag loop filter is shown in 

Figure 5.4. 

 

Figure 5.4. The amplitude and phase response of the passive lead-lag loop filter. 
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o Active lead-lag filter 

First order passive lead-lag filter having one pole and one zero can be found at  

Figure 5.5. The transfer function of this filter is as follow: 

 

𝐹(𝑠) =
𝑈𝑓(𝑠)

𝑈𝑑(𝑠)
= 𝐾0

1+𝑠𝜏2

1+𝑠𝜏1
  (5.14) 

 

𝜏1 and 𝜏2 can be defined as 𝑅1𝐶1 and 𝑅2𝐶1 respectively; but active lead-lag filter has 

also gain component as 𝐾0 = 
𝐶1

𝐶2
. The phase lead characteristics comes from zero in 

the numerator, whereas the pole in the denominator produces the phase lag. 

 

Figure 5.5. Active lead-lag filter. 

 

The amplitude and phase response of the passive lead-lag loop filter is shown in 

Figure 5.6. 
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Figure 5.6. The amplitude and phase response of the active lead-lag loop filter. 

 

o Active PI filter 

This is another active loop filter having low pass filtering characteristics. PI filter 

can also be used in the instrumentation control as “proportional + integral” 

controller. The transfer function of the PI filter can be expressed below: 

𝐹(𝑠) =
𝑈𝑓(𝑠)

𝑈𝑑(𝑠)
=  
1 + 𝑠𝜏2
𝑠𝜏1

 (5.15) 

The PI filter has a pole at zero like in an integrator, because of that, it has infinite 

gain at DC to eliminate steady state errors. 

The circuit diagram and its bode plot can be seen at Figure 5.7 and Figure 5.8 

respectively. 

 

Figure 5.7. Active PI filter. 
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Figure 5.8. The amplitude and phase response of the active PI loop filter. 

 

o Higher order loop filters 

Reference frequency feedthrough has an impact on the spectral purity of PLL 

frequency synthesizers. If the loop filter does not sufficiently attenuate the AC 

components at the reference frequency that are generated by the phase detector, 

spurious sidebands may be intolerable. To limit reference frequency feedthrough, 

higher-order loop filters are required. 

With higher-order loop filters, loop stability becomes an issue. Getting stable 

operation with a second-order PLL was easy because the open-loop transfer function 

had two poles and one zero. A pole creates a phase shift of −90° at higher 

frequencies, and a zero creates a phase shift of +90°. When the poles and the zero 

are properly located, the overall phase shift never comes close to −180°; hence, the 

loop stays stable. This goal was easily met by choosing time constant 𝜏2 of the loop 

filter such that a reasonable damping factor ζ was obtained. If the loop filter has two 

or more poles, the phase shift can become larger than 180°, hence the poles and 

zeroes of the loop filter must be placed such that stability is maintained.  
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Higher order loop filters can be obtained by adding a second order lowpass filter to 

the loop filter as in Figure 5.9. 

 

Figure 5.9. Fourth order active PI loop filter.  

This filter has a second-order PI filter and a two-pole low-pass filter. The transfer 

function of this filter as follow: 

 

𝐹(𝑠) =
𝑈𝑓(𝑠)

𝑈𝑑(𝑠)
=  
1 + 𝑠( 𝜏2 +  𝜏3)

𝑠𝜏1(1 + 𝑠 𝜏3)

1

(1 + 𝑠𝜏4) (1 + 𝑠𝜏5)
 

(5.16) 

 

The poles of the PI are located at 𝑠 = 0, 𝑠 = 𝜔3 and the zero of the PI is located at 

𝑠 = 𝜔2. The second order low-pass filter can have real poles or complex-conjugate 

pole pair. However, generally low-pass filter with complex-conjugate pole pair is 

used. The transfer function for this case can be expressed as 

 

𝐹(𝑠) =
𝑈𝑓(𝑠)

𝑈𝑑(𝑠)
=  
1 + 𝑠( 𝜏2 +  𝜏3)

𝑠𝜏1(1 + 𝑠 𝜏3)

1

1 + 
2𝑠
𝜔𝑠

 +  
𝑠2

𝜔𝑠2𝑇

 
(5.17) 
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5.2.6 PLL Control Loop Design 

There are so many methods in the control theory to analyze the stability of feedback 

system. We will use the bode plot method to analyze and design the control loop of 

the PLL.  

To analyze stability, the bode diagram is plotted by importing 𝑗𝜔 in s in the open 

loop transfer function. The magnitude curve crosses the 0-dB line at a radian 

frequency named transition frequency 𝜔𝑇. At the transition frequency, the open-loop 

gain is exactly 1. The system is stable if the phase of G(𝜔𝑇) is more positive than 

−180°. In this frequency, phase margin is described as ∅𝑚 = 180 + ∅(𝜔𝑇). Phase 

margin is generaly be designed in range between 30 and 60 degrees. In our design 

this value will be 45 by coinsiding the zero of the filters with transition frequency 

𝜔𝑇.  

In the design, we wanted to obtain maximum roll off slope to suppress the high 

frequency component; because of that the only one zero is inserted in the loop and 5 

poles are inserted. However, poles create stability problems. To solve the stability 

problems, poles are located away from the transition frequency.  

The poles and the zero of the system are placed with reference to the transition 

frequency 𝜔𝑇. Consequently, the loop design can start with an initial value for 𝜔𝑇. 

According to the desired PLL loop bandwidth, 𝜔𝑇 is determined. For a 3-dB closed 

loop bandwidth with damping ratio of 0.7, 𝜔𝑇  can be expressed as  

 

𝜔𝑇  ≈
𝜔3𝑑𝐵
1.33

 (5.18) 

 

This ratio stays nearly unchanged for higher-order PLL. This is a consequence of the 

fact that we always try to shape the magnitude plot such that its magnitude curve 

crosses the 0-dB line with a slope of about −20 dB/decade. 
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5.2.7 Controller Design for The First and Second Resonant Modes 

PLL design for the resonator is done in the analog domain, and then the digital 

counterpart is designed in software. The center frequency of the resonators in FM 

gyroscope is 10kHz and desired PLL bandwidth is 100Hz for both of the modes. 

Because of that the PLL design is same for the modes, the only difference is the 

oscillation amplitude determined by the automatic amplitude controller. 

PLL is designed with a model shown in Figure 5.10. The loop filter inside the loop 

is chosen as 4th order active PI controller as in Figure 5.9. The reason for this 

controller is to filter the high frequency components resulting from the phase detector 

and to decrease the phase error to zero with infinite gain at DC. 

 

Figure 5.10. Linearized PLL block diagram. 

The controller design starts with writing the open loop transfer function of the 

system. Our PLL system has 3 components, phase detector, loop filter, and VCO. 

The transfer functions of them are derived at previous sections. Now, we can write 

the open loop transfer function as in Equation below. 

 

𝐺(𝑠) = 𝐾𝑝𝑑𝐹(𝑠)
𝐾0
𝑠
=
𝐾0𝐾𝑑
𝑠

 
1 + 𝑠(𝑇2)

𝑠𝑇1(1 + 𝑠 𝑇3)

1

1 + 
2𝑠
𝜔𝑠

 + 
𝑠2

𝜔𝑠2𝑇

 
(5.19) 
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 Where 𝑇1 = 𝜏1, 𝑇2 =  𝜏2 +  𝜏3 =
1

𝜔2
, and 𝑇3 = 𝜏3 =

1

𝜔3
. 

The loop filter has poles at 𝑠 = 0 and 𝑠 = 𝜔3, and a zero at 𝑠 = 𝜔2. The poles of the 

2-pole filter are located as complex-conjugate at 𝜔𝑠. With these poles and zero, at 

low frequency, we have -40 dB/decade. When we reach zero at 𝜔2, the slope 

becomes -20 dB/decade. If we place the 𝜔3, after the 𝜔2, slope becomes -40 

dB/decade again. To further decrease the high frequency noises, we can place the 𝜔𝑠 

after the 𝜔3. The last placement of  𝜔𝑠 provides -80 dB/decade at high frequencies. 

After deciding the pole and zero placement order, we can define a procedure for the 

placement of them.  

At first, the desired bandwidth of the PLL system should be decided. In our case, 

𝜔3𝑑𝐵 bandwidth will be 100Hz; but it is generally be chosen  as 
𝜔0

20
 or lower. Then, 

we can calculate the transition frequency in Equation 5.20  as stated in Equation 5.18. 

The gain at 𝜔2 is set 1. 

𝜔2 =
𝐾0𝐾𝑑

𝜔𝑇2
= 𝜔𝑇  ≈

𝜔3𝑑𝐵

1.33
= 75𝐻𝑧  = 471 rad/sec (5.20) 

 

After that we can decide the 𝜔3. When we add 𝜔3 near to the 𝜔2, high frequency 

filtering effect improves; but the decrease in the phase margin leads stability 

problems. The appropriate placement of 𝜔3 is the 5 times the 𝜔2 in the loop as. 

 𝜔3 = 5𝜔2 = 75 ∗ 5 = 375𝐻𝑧 = 2355 rad/sec (5.21) 

 

To make the 𝜔2 is the transition frequency, 𝑇1 should be chosen that provides the 

open-loop gain is 1 at 𝜔2. 𝑇1 can be expressed below: 

 

𝑇1 =
𝐾0𝐾𝑑
𝜔𝑇

2
=  

1 ∗ 0.5

222
= 2.25𝑒 − 6 (5.22) 
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Thus we should chose the appropriate values for 𝜔𝑠 and  of the 2-pole low pass 

filter. Generally, the damping factor is chosen as 0.7 for this type of filter, and  is 

chosen as 0.7. Then, the poles of this filter should be placed where it does not 

deteriorate the phase margin of the system. The sufficient margin can be obtained by 

applying the rule below 

𝜔𝑠 = 5 𝜔3 =   5 ∗ 2355 = 11775 𝑟𝑎𝑑/𝑠𝑒𝑐 (5.23) 

 

Finally, we have obtained the open loop transfer function as in Figure 5.11. 

 

Figure 5.11. The open loop transfer function of the designed PLL control loop. Phase 

margin: 47°, Gain Margin: 25dB. 

 

When we analyze the closed loop transfer function, we can obtain the 3dB and -90° 

phase shift bandwidth of the PLL. Figure 5.12 shows the closed loop transfer 

function. . 
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Figure 5.12. The closed loop transfer function of the designed PLL control loop.  

90° phase shift bandwidth: 104Hz, -3dB bandwidth: 125Hz.  

 

After we obtain the closed loop transfer function, the step response of the closed loop 

PLL system is simulated as shown in Figure 5.13. The system settles in 30ms. 

 

Figure 5.13. The step response of the closed loop PLL system. Settling time: 30msec. 
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5.3 LFM Operation 

At first, the two oscillation modes are oscillated and locked with a digital PLL inside 

the loop. The PLLs inside the two oscillating loops provide the direct frequency 

reading from the oscillators. After we obtain the oscillation frequencies, frequency 

split is adjusted by tuning the prof mass of the second mode to predefined frequency.  

The operation of the LFM gyroscope relies on modulating the rate sensitivity at the 

frequency split of the modes.  

The instantaneous frequencies of the two modes can be expressed below: 

    

∅̇𝑥 = 𝜔𝑜𝑥 − 𝛼𝑧
𝑉𝑦

𝑉𝑥
𝑧 sin∅𝑥𝑦 (5.24) 

 

∅̇𝑦 = 𝜔𝑜𝑦 − 𝛼𝑧
𝑉𝑥
𝑉𝑦

𝑧 sin∅𝑥𝑦 (5.25) 

 

The frequency sum gives the rate dependent out as in Equation below. However, this 

equation has very high DC component coming from the mechanical resonant 

frequencies. 

 

∑∅̇𝑥𝑦 = 𝜔𝑜𝑥 + 𝜔𝑜𝑦 − (
𝑉𝑦

𝑉𝑥
+
𝑉𝑥
𝑉𝑦
)𝛼𝑧𝑧 sin∅𝑥𝑦 (5.26) 

 

In order to suppress the DC component of the sum of frequencies, very low cut-off 

frequency high pass filter is used. After filtering the signal, we have rate signal 

modulated by the phase difference between the modes. 
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Rate information can be obtained from this signal by modulating with sine of the 

phase difference. In an analog PLL driven systems, the acquisition of the phase is 

diffucult to obtain; but in the digital PLL, we can acquire the phase difference from 

the software. After doing the modulation we have obtained the signal below: 

sin∅𝑥𝑦 ℎ𝐻𝑃𝐹∑∅̇𝑥𝑦 ≈ − 
1

2
(
𝑉𝑦

𝑉𝑥
+
𝑉𝑥
𝑉𝑦
)𝛼𝑧𝑧(1 − cos 2∅𝑥𝑦) (5.27) 

 

Now, we have obtained the rate signal with DC and cos 2∅𝑥𝑦 components. The 

image at 2∅𝑥𝑦 can be suppressed by using a low pass filter at the output of the 

modulator. Finally, we get the rate out from the frequency outputs as follow: 

 

ℎ𝐿𝑃𝐹 (sin∅𝑥𝑦 ℎ𝐻𝑃𝐹∑∅̇𝑥𝑦) ≈ − 
1

2
(
𝑉𝑦

𝑉𝑥
+
𝑉𝑥
𝑉𝑦
)𝛼𝑧𝑧 (5.28) 

 

Thus, in this equation, phase is the directly related with the velocity ratios and the 

angular gain. Therefore, we obtained a very short definition of the rate that has very 

low mechanical and electrical sensor parameters. 

5.4 Noise Performance of LFM Gyroscope 

In this part, the mechanical  and electrical parameters of the digitally controlled FM 

gyroscope will be used to figure out the phase noise of the first and second modes 

with digital PLL inside the loop.  

The mechanical parameters of the MEMS gyroscope sensor chip can be seen at Table 

5.1. The gyroscope has a non-symmetric structure for the first and second modes. 

Therefore, the noise calculations for these modes will be calculated separately as 

follow. 
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Table 5.1 Mechanical parameters of the MEMS gyroscope sensor chip. 

Parameters First mode Second mode 

Resonant frequency (Hz)  7636 7656 

Capacitive gap (m) 2.6 2.6 

Capacitance (fF) 776 5160 

Mass (kg) 5.15E-08 6.15E-08 

Proof mass voltage (V) 26.3 26.3 

Quality factor 100,000 10,000 

 

5.4.1 Noise Calculations for The First Mode: 

The first mode is oscillated with 5m displacement, and operated at 7636 Hz with 

20Hz frequency-split with second mode. The system model used in the Chapter 4 for 

the oscillator with digital PLL will be used in this calculation.  

The modeling parameters and the details of the noise derivations can be found at 

Chapter 4. 

At first, the impedance of the oscillator should be defined as follow 

𝑍𝐿 =  2𝑗𝜔𝐿𝑚
(𝜔𝑛 −𝜔𝑠)

𝜔
=  2𝑗𝜔𝑄𝑅𝑚

(∆𝜔)

𝜔
  (5.29) 

 

For the first mode of the FM gyroscope, 𝑅𝑚 = 100𝑘 and 𝑄 = 100000.  

After that, we should calculate the noises at the nodes, 𝑣𝑛𝑟, 𝑣𝑛𝑑𝑟𝑣, 𝑣𝑛𝑑𝑎𝑐, 𝑣𝑛𝑝𝑟𝑒, and 

𝑣𝑛𝑎𝑑𝑐.   
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Figure 5.14.The simplified circuit model of the oscillator with digital PLL. 

 

The mechanical noise of the oscillator 𝑣𝑛𝑟 can be calculated as 

 

𝑣𝑛𝑟 = √4𝑘𝑇𝑅𝑚 = 40𝑛𝑉/√𝐻𝑧 (5.30) 

 

The output of the DAC is directly fed to the resonator with a passive filter having 

very low noise compared with DAC noise, because of that 𝑣𝑛𝑑𝑟𝑣 is assumed zero. 

The noise at the DAC output can be calculated by using the refresh rate and SNR 

values of the DAC. However, DAC has also some constant noise limited by output 

buffer. The output noise of the DAC used in the system is 75nV/√𝐻𝑧  

𝑣𝑛𝑑𝑎𝑐 =  75𝑛𝑉/√𝐻𝑧 (5.31) 
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The noise of the preamplifier can be calculated by the noise of the opamp and the 

passive components of the preamplifier. In this circuit, preamplifier is designed as 

resistive preamplifier. The preamplifier is also having some gain stage at the output; 

but during calculation, gain stage will be combined with preamplifier. The 

parameters of the preamplifier are below: 

𝑣𝑛𝑝𝑟𝑒 =  784𝑛𝑉/√𝐻𝑧 (5.32) 

 

 

𝑍𝑝𝑟𝑒 =  3𝑀 (5.33) 

 

The noise of the ADC input can be calculated by using the sampling rate and SNR 

values of the ADC. The sampling rate of the ADC is 240kSPS and the SNR of the 

ADC is 86dB. The noise of the ADC with these parameters and the 2.5V full scale 

input is as follow. 

   

𝑣𝑛𝑎𝑑𝑐 = 

2.5

2 ∗ √2

10
𝑆𝑁𝑅
20 √120000

 = 129𝑛𝑉/√𝐻𝑧 (5.34) 

 

Thus, the phase noise can be calculated by using the equation below by inserting the 

noise sources. 

∅𝑜𝑢𝑡
2 = (

𝐾𝑝𝑑𝐹(𝑠)𝐾0

𝑠 +  𝐾𝑝𝑑𝐹(𝑠)𝐾0
)

2

 

(
1
𝑅𝑚

)
2

(𝑣𝑛𝑟
2 + 𝑣𝑛𝑑𝑟𝑣

2 + 𝑣𝑛𝑑𝑎𝑐
2) + (

2𝑄 
𝑍𝑝𝑟𝑒

)
2

( 𝑣𝑛𝑝𝑟𝑒
2 +  𝑣𝑛𝑎𝑑𝑐

2)

𝑖𝑟
2(1 +  2𝑄)2

 

 

(5.35) 
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The transfer function coming from the PLL can be seen as a low pass filter for the 

phase noise, and the bandwidth of the PLL generally does not affect the spectral 

noise; but limits the integrated noise by filtering the phase noise. 

The final result is written below with the only variable is  and the graph can be 

seen at Figure 5.15. 

 

∅𝑜𝑢𝑡
2 = (𝐻𝐿𝑃𝐹(𝑠))

2 

(
1
𝑅𝑚

)
2

(𝑣𝑛𝑟
2 + 𝑣𝑛𝑑𝑟𝑣

2 + 𝑣𝑛𝑑𝑎𝑐
2) + (

2𝑄 
𝑍𝑝𝑟𝑒

)
2

( 𝑣𝑛𝑝𝑟𝑒
2 +  𝑣𝑛𝑎𝑑𝑐

2)

𝑖𝑟
2(1 +  2𝑄)2

 

 

(5.36) 

 

 

Figure 5.15. Frequency noise result of the first mode of the FM gyroscope. 

111Hz/Hz at 20Hz frequency split. 
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5.4.2 Noise Calculations for The Second Mode 

The second mode is oscillated with 2nm displacement, and operated at 7656 Hz with 

20Hz frequency-split with first mode. The system model in the Chapter 4 for the 

oscillator with digital PLL will be used in this calculation.  

The modeling parameters and the details of the noise derivations can be found at 

Chapter 4. 

At first, the impedance of the oscillator should be defined as follow 

𝑍𝐿 =  2𝑗𝜔𝐿𝑚
(𝜔𝑛 −𝜔𝑠)

𝜔
=  2𝑗𝜔𝑄𝑅𝑚

(∆𝜔)

𝜔
  (5.37) 

 

For the second mode of the FM gyroscope, 𝑅𝑚 = 10𝑀 and 𝑄 = 10000.  

After that, we should calculate the noises at the nodes, 𝑣𝑛𝑟, 𝑣𝑛𝑑𝑟𝑣, 𝑣𝑛𝑑𝑎𝑐, 𝑣𝑛𝑝𝑟𝑒, and 

𝑣𝑛𝑎𝑑𝑐.  

  

The mechanical noise of the oscillator 𝑣𝑛𝑟 can be calculated as 

 

𝑣𝑛𝑟 = √4𝑘𝑇𝑅𝑚 = 400𝑛𝑉/√𝐻𝑧 (5.38) 

 

The output of the DAC is directly fed to the resonator with a passive filter having 

very low noise compared with DAC noise, because of that 𝑣𝑛𝑑𝑟𝑣 is assumed zero. 

The noise at the DAC output is same with the DAC noise of the first mode. The 

output noise of the DAC used in the system is 75nV/√𝐻𝑧  

𝑣𝑛𝑑𝑎𝑐 =  75𝑛𝑉/√𝐻𝑧 (5.39) 
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The noise of the preamplifier can be calculated by the noise of the opamp and the 

passive components of the preamplifier. In this circuit, preamplifier is designed as 

capacitive preamplifier. The preamplifier is also have some gain stage at the output; 

but during calculation, gain stage will be combined with preamplifier. The 

parameters of the preamplifier are below: 

𝑣𝑛𝑝𝑟𝑒 =  5322𝑛𝑉/√𝐻𝑧 (5.40) 

 

 

𝑍𝑝𝑟𝑒 =  240𝑀 (5.41) 

 

The noise of the ADC input can be calculated by using the sampling rate and SNR 

values of the ADC. The sampling rate of the ADC is 240kSPS and the SNR of the 

ADC is 86dB. The noise of the ADC with these parameters and the 2.5V full scale 

input is as follow. 

   

𝑣𝑛𝑎𝑑𝑐 =  

2.5

2 ∗ √2

10
𝑆𝑁𝑅
20 √120000

 = 129𝑛𝑉/√𝐻𝑧 (5.42) 

 

Thus, the phase noise can be calculated by using the equation below by inserting the 

noise sources. 

∅𝑜𝑢𝑡
2 = (

𝐾𝑝𝑑𝐹(𝑠)𝐾0

𝑠 +  𝐾𝑝𝑑𝐹(𝑠)𝐾0
)

2

 

(
1
𝑅𝑚

)
2

(𝑣𝑛𝑟
2 + 𝑣𝑛𝑑𝑟𝑣

2 + 𝑣𝑛𝑑𝑎𝑐
2) + (

2𝑄 
𝑍𝑝𝑟𝑒

)
2

( 𝑣𝑛𝑝𝑟𝑒
2 +  𝑣𝑛𝑎𝑑𝑐

2)

𝑖𝑟
2(1 +  2𝑄)2

 

 

(5.43) 
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The final result is written below with the only variable is  and the graph can be 

seen at Figure 5.16. 

 

∅𝑜𝑢𝑡
2 = (𝐻𝐿𝑃𝐹(𝑠))

2 

(
1

10𝑒6)
2

(400𝑛2 + 75𝑛2) + (
2 ∙ 1000 ∙  

240𝑒6 )
2

( 5322𝑛2 +  129𝑛2)

5𝑛2(1 +  2 ∙ 1000 ∙ )2
 

 

(5.44) 

 

 

Figure 5.16. Frequency noise result of the second mode of the FM gyroscope. 

556Hz/Hz at 20Hz frequency split. 

  

 

 

 



 

 

86 

5.4.3 FM Gyroscope Rate Noise Calculation 

In the FM gyroscope used in this thesis is operated as with 1:2500 amplitude 

mismatch to enhance the frequency reading capability by increasing the scale factor. 

In this operation frequency split is introduces as 20Hz between the modes to realize 

LFM operation. During the LFM operation the scale factor can be calculated as 

follow by using the Equation  5.28. 

 

𝑆𝐹 = − 
1

2
(
𝑉𝑦

𝑉𝑥
+
𝑉𝑥
𝑉𝑦
)𝛼𝑧 = − 

1

2
(
2𝑛

5𝑢
+
5𝑢

2𝑛
) 0.7 = 875 

𝐻𝑧

𝑟𝑎𝑑/𝑠𝑒𝑐
 (5.45) 

 

The rate noise can be calculated by using the scale factor and frequency noises 

calculated at previous section.  

The frequency noises of the first and second mode at the 20Hz frequency split are 

111Hz/Hz  and 556Hz/Hz respectively. The total output noise can be calculated 

by combining the uncorrelated noises as follow 

 

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑜𝑖𝑠𝑒 = √(111𝑒(−6)2 + 556𝑒(−6)2)

= 567Hz/Hz  
(5.46) 

 

 

𝑟𝑎𝑡𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑜𝑖𝑠𝑒 =
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑜𝑖𝑠𝑒

𝑆𝐹
180 ∗ 3600

= 0.42°/ℎ𝑟/Hz  

(5.47) 

 

The rate noise of the sensor is double sided and its noise characteristic is not white, 

because of that noise spectrum has higher noise at higher frequencies due to 
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quantization noise characteristics of the frequency reading. The noise spectrum can 

be seen at Figure 5.17. 

 

Figure 5.17. The rate noise spectrum of the FM Gyroscope. 

 

 

The Allan Variance result can be obtained from the rate noise spectrum as in  

Figure 5.18 
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Figure 5.18. The Allan Variance analysis obtained from rate noise spectrum.  

ARW: 0.42°/hr/Hz. 

 

5.5 Test Results of the FM Gyroscope with Amplitude-Mismatch-Ratio 

For testing, digitally controlled FM gyroscope circuit as in  Figure 5.19 was 

connected to the non-symmetric quad-mass tuning fork gyroscope shown in Figure 

5.20 with nominal 𝑓0 = 7.5𝑘𝐻𝑧. The quality factors of the first and second mode are 

𝑄1 = 100𝑘 and 𝑄2 = 10𝑘 respectively. The resonators are oscillated inside the 

digital controller and acquired the frequencies at the same time by use of digital PLL. 

The output of the PLL is used to extract the rate information by doing some 

modulations and filtering related with LFM gyroscope.  
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Figure 5.19.  Digitally controlled FM gyroscope readout circuit.  

Dimensions: 45mm x 35mm x 7mm 

 

 

Figure 5.20. Non-symmetric quad-mass tuning fork gyroscope.  

Dimensions: 8mm x 6.5mm x 0.9mm  
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The sensitivity of the FM gyroscope is set by the amplitude ratios and the angular 

gain of the structure. To analyze the effectiveness of the higher amplitude ratio of 

the FM gyroscope, performance tests were conducted for the ratios of 75, 500, and 

2500. During these tests, Allan-Variance Analysis, temperature characterization of 

bias and scale factor are done.  

For the 3 different amplitude ratios having constant first mode displacement, 

temperature characterization tests were conducted.  

During the test, scale factor and bias values of the FM gyroscope is measured by 

using a rate table having temperature chamber as  shown in Figure 5.21. The 

temperature inside this chamber is increased from 15°C to 55°C,  and the tests were 

conducted in different temperature settings. 

 

Figure 5.21. Temperature characterization setup for different amplitude ratios of 

the FM gyroscope 



 

 

91 

The increase in the amplitude ratio, did not worsen the scale factor change over 

temperature as shown in Figure 5.22.  

 

Figure 5.22. FM gyroscope scale factor test for different temperature values. The 

scale factor change in temperature is similar for 3 different amplitude ratios.  

 

While conducting scale factor test, bias values of the sensors were also collected to 

compare the bias change over temperature. The increased amplitude ratio improved 

the bias change over temperature performance of the FM gyroscope from 35°/hr to 

10°/hr over 15°C to 55°C as shown in Figure 5.23 
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Figure 5.23. FM gyroscope bias change over temperature test result. Increased 

amplitude ratio improved the bias change from 35°/hr to 10°/hr over 15°C to 55°C. 

 

 

To compare the effectiveness of the scale factor and bias change over temperature of 

the FM gyroscope over AM gyroscope, the gyroscope system is operated as AM 

during the temperature test. The AM operated gyroscope showed the scale factor 

change over temperature as about 8500ppm over 15°C to 55°C. When we compare 

the result with the FM gyroscope with a 2500 amplitude ratio, the FM gyroscope is 

three times better than the AM gyroscope, as shown in Figure 5.24.  
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Figure 5.24. FM and AM gyroscope scale factor test for different temperature 

values. The scale factor change in temperature is 3 times higher for the AM 

gyroscope compared to the FM gyroscope. 

 

 

After the scale factor test, the bias change over temperature test were conducted. 

Then, the bias change over temperature test results for the AM and FM cases are 

compared. The AM-operated gyroscope showed four times the change in bias over 

temperature that is obtained from an FM-operated gyroscope, as shown in Figure 

5.25 
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Figure 5.25. FM and AM gyroscope bias test for different temperature values. The 

bias change in temperature is 4 times higher for the AM gyroscope compared to the 

FM gyroscope. 

 

The most important performance metrics for a gyroscope are angular random walk 

and bias instability. These are obtained by applying the Allan Variance Analysis for 

the collected rate data from the stationary FM operated MEMS gyroscope. During 

the test, rate data collected for 3 different amplitude ratios of 75, 50, and 2500. The 

test results for 3 different amplitude ratio FM MEMS gyroscope operations were 

analyzed as shown in Figure 5.26 to Figure 5.28 respectively. These results showed 

that, the increase in the amplitude ratio improves the angular random walk and bias 

instability performances of the FM MEMS gyroscope as inFigure 5.29. 
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Figure 5.26. Allan Variance Analysis result for FM gyroscope operated with 75:1 

amplitude ratio. ARW: 17.4°/hr/Hz, BI: 0.83°/hr. 

 

Figure 5.27. Allan Variance Analysis result for FM gyroscope operated with 500:1 

amplitude ratio. ARW: 2.6°/hr/Hz, BI: 0.13°/hr. 
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Figure 5.28. Allan Variance Analysis result for FM gyroscope operated with 500:1 

amplitude ratio. ARW: 0.52°/hr/Hz, BI: 0.13°/hr. 

 

Figure 5.29. Allan Variance Analysis result for FM gyroscope operated with 

different amplitude ratios. 
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After getting the performance test results of the digitally controlled FM gyroscope 

matches with the theoretical results, Digital controller is configured as an AM 

gyroscope to compare the FM and AM operations in the digitally controlled 

operation.  

In the FM operation the frequency split is adjusted as 20Hz to increase the 

performance of the gyroscope. However, in AM operation, the frequency split is 

arranged as 700Hz to operate the second mode of the gyroscope without stability 

problems. Thus, we obtained the performance results of this AM gyroscope as 

follow.  

 

Figure 5.30. Allan-Variance Analysis of the digitally controlled AM gyroscope. 

ARW: 8.12°/hr/Hz, BI: 0.74°/hr. 
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As it can be seen at Figure 5.30, the noise performance of the FM gyroscope is 16 

times better than the AM gyroscope. The reason for this performance increase is the 

very low frequency split operation provided by FM operation and the increased 

amplitude mismatch to improve the frequency reading performance. The 

performance comparisons of the FM and AM operations can be seen at Figure 5.31. 

 

Figure 5.31. The comparison of the digitally operated FM and AM gyroscopes. 

ARW of FM: 0.52°/hr/Hz, ARW of AM: 8.12°/hr/Hz.  

 

The performance of the digitally implemented FM gyroscope can also be compared 

with the FM gyroscope studies conducted with different researchers. The 

performance metrics can be Angular Random Walk (ARW), Bias Instability (BI), 

Mode split, read-out feature,  etc. The Table 5.1 shows this comparison table.  
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Table 5.2 Summary and comparison table of the FM gyroscope performance. 

 

This work 

 

Eminoglu[17] 

 

 

Kline [16] 

 

 

Wang[19] 

 

 

Leoncini[32] 

 

Angular 

Random Walk 

(ARW)  

(°/hr/Hz) 

0.5 3.6 17.6 18.9 112 

Bias 

Instability 

(°/hr) 

0.2 1.2 1.7 2.1 5.4 

Mode-split 

(Hz) 
20 10 26 9 104 

Power 

Consumption 

(ASIC + 

FPGA) 

300mW >1W >1W >1W >1W 

Read-out 

Features 

Digital 

oscillator 

sustaining 

loop and 

frequency 

processing 

with 

custom 

microcont

roller 

board 

design 

Analog ASIC 

for oscillator 

sustaining 

loop. 

Frequency 

and data 

processing 

with FPGA 

development 

board 

Analog 

oscillator 

sustaining 

loop, 

Frequency 

and data 

processing 

with FPGA 

developme

nt board 

Digital 

oscillator 

sustaining 

loop and 

frequency 

processing 

with 

custom 

FPGA 

board 

design 

Analog 

ASIC for 

oscillator 

sustaining 

loop with a 

frequency to 

digital 

converter 

inside the 

ASIC. 
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Thus, The FM gyroscope implemented with digital oscillator sustaining loop and 

frequency processing with custom microcontroller board in this study has the lowest 

Angular Random Walk (ARW) and Bias Instability (BI) performance compared with 

other studies conducted on FM gyroscopes. 
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CHAPTER 6  

6 CONCLUSIONS  

The main goal of this study is to improve the angular random walk (ARW) and bias 

instability (BI) of a capacitive FM MEMS gyroscope by utilizing digital control 

loops implemented with a digital microcontroller.  The most important parameter in 

an FM gyroscope is the frequency resolution.  The frequency noise is analyzed and 

controlled with a sophisticated PLL design.  The angular random walk and bias 

instability performance of the FM gyroscope is greatly improved by using a high  

amplitude mismatch ratio for the first and second modes, as well as utilizing 

Lissajous FM method. The following is a list of the research's accomplishments and 

outcomes: 

1. An asymmetric tuning fork gyroscope has been analyzed at the system level for 

the first mode, the second mode, and the quadrature cancellation system. The transfer 

functions of the subsystems have been derived.  Also, the mode-matching methods 

are explained, along with their pros and cons. 

2. Next, the FM gyroscope is modeled in detail.  The gyroscope system is modeled 

as two oscillators that are coupled to each other. This analysis shows that the forces 

that act together can change the effective damping and spring constant for both 

operational modes.  Damping changes if the force is in sync with the speed.  

Similarly, the stiffness changes if the force is in sync with displacement.  A standard 

FM gyroscope uses this second method resulting in the fact that the effective 

resonant frequency of both the first and second mode changes with the angular rate.  

The change in the resonant frequency by angular rate is typically much small 

compared to the mechanical resonant frequency of the sensor, which corresponds to 

a very high zero angular rate offset. In order to get rid of this offset, the Lissajous 
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FM gyroscope method is studied and the mathematical formulas are figured out to 

set up the system. 

3. The resolution and stability of the oscillator frequency are the two important 

parameters that directly affects the angle random walk and bias instability 

performance of the FM gyroscope.  The theory and operating principles of the 

oscillator is explained in detail.  After that, the theory of the oscillator phase noise 

for both linear and non-linear models is derived.  Next, a closed-loop oscillator phase 

noise analysis is done for both analog and digital controller-based systems including 

noise contributions of resonator, amplifiers, and data converters. 

4. A digitally controlled and configurable (FM or AM) gyroscope system is designed, 

manufactured, and then the firmware is developed.  The operation of a closed loop 

gyroscope with a digital microcontroller requires numerous calculations, including 

trigonometric conversions. As a rule of thumb, the speed of the digital controller 

loops must be greater than 10 times the resonant frequency of the selected MEMS 

gyroscope, which is around 7.5kHz.  Selecting a microcontroller with a hardware 

accelerator and register level programming, a firmware is developed to accomplish 

the required calculations in only 12.5 sec/cycle.  

5. The developed FM gyroscope system is fully programmable allowing the user to 

select different operation modes with advanced digital controller implementations.  

This includes but not limited switching between FM to AM mode, frequency 

mismatch operation to matched-frequency operation, and/or sophisticated 

calibration and test methods that cannot be met by analog implementations (such as 

mode reversal).  Furthermore, the completed system consists only of an ADC, a 

DAC, a microcontroller, and a power unit. In comparison to the analog 

implementation of the gyroscope readout circuit, the digital implementation is much 

simpler to manufacture due to the reduced number and type of components. The 

reduction of the number of analog components in the gyroscope controller circuits 

also helps minimizing the aging effects.  
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The PLL within the design of a digital controller is crucial for maintaining oscillation 

with low phase noise and reading the rate-dependent frequency from the PLL.  

A PLL design procedure is developed in order to track the frequency changes that 

occur at the frequency split between the two operational modes. In contrast to the 

standard PLL, the bandwidth of this PLL also determines the bandwidth of the 

gyroscope, which must be properly designed to fit the requirements of different 

applications.  In this study, the PLL bandwidth is selected as 100Hz.    

The rate noise performance of the developed FM gyroscope is estimated as 

0.42°/hr/Hz, which is quite close to the measured value of 0.52°/hr/Hz. 

The performance of the fabricated FM MEMS gyroscope is evaluated at the sensor 

level. The tested prototype achieved an extraordinary performance level by 

demonstrating an ARW of 0.52°/hr/Hz and BI of 0.2°/hr.  In order to compare the 

performance of the FM mode of the MEMS gyroscope to the AM mode, the digitally 

controlled FM gyroscope is reprogrammed to operate as an AM gyroscope.  The AM 

gyroscope showed an ARW and BI performance of 8.12°/hr/Hz and of 0.74°/hr, 

respectively. The results demonstrated that FM mode operation of this particular 

asymmetric MEMS gyroscope improves the ARW and BI performance by 

approximately 16 times and 3.5 times, respectively, compared to AM mode 

operation. 

Finally, the results of the FM gyroscope developed in this study is compared with 

other FM gyroscopes reported in the literature.  The novel FM techniques developed 

in this study applied to a commercial MEMS gyroscope developed by 

Mikrosistemler achieved the best Angular Random Walk (ARW) and Bias Instability 

(BI) performance among other FM gyroscope studies.  These results motivate us to 

commercialize this new FM gyroscope in near future. 
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